Home Screen conformal lightlike hypersurfaces of an indefinite cosymplectic manifold
Article
Licensed
Unlicensed Requires Authentication

Screen conformal lightlike hypersurfaces of an indefinite cosymplectic manifold

  • Abhitosh Upadhyay , Ram Shankar Gupta EMAIL logo and Ahmad Sharfuddin
Published/Copyright: October 14, 2016
Become an author with De Gruyter Brill

Abstract

The paper is mainly devoted to the study of the geometry of screen conformal lightlike hypersurfaces of an indefinite cosymplectic manifold. The main result is a characterisation theorem for screen conformal lightlike hypersurfaces of an indefinite cosymplectic space form. The examples of totally geodesic, screen homothetic and screen conformal lightlike hypersurfaces are also given.

References

[1] W. B. Bonnor, Null hypersurfaces in Minkowski space-time, Tensor (N.S.) 24 (1972), 329–345. Search in Google Scholar

[2] C. Călin, Contribution to geometry of CR-submanifold, Ph.D. thesis, University of Iasi, Romania, 1998. Search in Google Scholar

[3] K. L. Dugall and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Math. Appl. 364, Kluwer Academic, Dordrecht, 1996. 10.1007/978-94-017-2089-2Search in Google Scholar

[4] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Hackensack, 2007. 10.1142/6449Search in Google Scholar

[5] K. L. Duggal and D. H. Jin, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form, J. Geom. Phys. 60 (2010), no. 12, 1881–1889. 10.1016/j.geomphys.2010.07.005Search in Google Scholar

[6] K. L. Dugall and B. Sahin, Differential Geometry of Lightlike Submanifolds, Front. Math., Birkhäuser, Basel, 2010. 10.1007/978-3-0346-0251-8Search in Google Scholar

[7] D. H. Jin, Screen conformal Einstein lightlike hypersurfaces of a Lorentzian space form, Commun. Korean Math. Soc. 25 (2010), no. 2, 225–234. 10.4134/CKMS.2010.25.2.225Search in Google Scholar

[8] D. H. Jin, Screen conformal lightlike real hypersurfaces of an indefinite complex space form, Bull. Korean Math. Soc. 47 (2010), no. 2, 341–353. 10.4134/BKMS.2010.47.2.341Search in Google Scholar

[9] T. H. Kang, S. D. Jung, B. H. Kim, H. K. Pak and J. S. Pak, Lightlike hypersurfaces of indefinite Sasakian manifolds, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1369–1380. Search in Google Scholar

[10] T. H. Kang and S. K. Kim, Lightlike hypersurfaces of indefinite cosymplectic manifolds, Int. Math. Forum 2 (2007), no. 65–68, 3303–3316. 10.12988/imf.2007.07304Search in Google Scholar

[11] D. N. Kupeli, Singular Semi-Riemannian Geometry, Math. Appli. 366, Kluwer Academic, Dordrecht, 1996. 10.1007/978-94-015-8761-7Search in Google Scholar

[12] G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geom. 4 (1970), 237–244. 10.4310/jdg/1214429387Search in Google Scholar

[13] B. O’Neill, Semi-Riemannian Geometry, Pure Appl. Math. 103, Academic Press, New York, 1983. Search in Google Scholar

[14] R. Roşca, On null hypersurfaces of a Lorentzian manifold, Tensor (N.S.) 23 (1972), 66–74. Search in Google Scholar

[15] A. Upadhyay and R. S. Gupta, Lightlike hypersurfaces of indefinite cosymplectic manifolds with parallel symmetric bilinear forms, Novi Sad J. Math. 40 (2010), no. 2, 37–45. Search in Google Scholar

[16] A. Upadhyay and R. S. Gupta, Semi-parallel lightlike hypersurfaces of indefinite cosymplectic space forms, Publ. Inst. Math. (Beograd) (N.S.) 89(103) (2011), 69–75. 10.2298/PIM1103069USearch in Google Scholar

Received: 2014-6-30
Accepted: 2015-7-6
Published Online: 2016-10-14
Published in Print: 2017-12-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0044/html
Scroll to top button