Home Global Market Evaluation: A Longitudinal Efficiency Assessment Approach
Article
Licensed
Unlicensed Requires Authentication

Global Market Evaluation: A Longitudinal Efficiency Assessment Approach

  • Gary H. Chao EMAIL logo , Maxwell K. Hsu and David A. Haas
Published/Copyright: September 18, 2014
Become an author with De Gruyter Brill

Abstract

Both experienced and novice international business practitioners may need to examine many country ranking reports on a frequent basis. Most of these reports focus on certain socio-economic variables and compute country rankings with a weighted average method, which does not distinguish between likely causes (i.e. inputs) and consequences (i.e. outputs). Through data envelopment window analysis (DEWA), the publicly accessible globalEDGE™ data were employed to compute the relative efficiency index for 22 countries from 2002 to 2009. Subsequently, the trend (averages) and the consistency (correlations) of relative country efficiency along the passage of years were examined to segment those countries into three groups: the “consistent performers,” the “sliding performers,” and the “improving performers” groups. This segmentation scheme may facilitate business practitioners when they develop their global expansion strategy. This paper introduces a complementary yet different longitudinal efficiency which could help multinational corporations’ top management teams and government decision makers evaluate the continuous performance of output/input efficiency.

Acknowledgment

The data belong to globalEDGE™ and Michigan State University, which holds copyright on the representation of the content, though not the content itself.

Appendix

Table 2:

Country scale efficiency in DEWA with window size 1

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0001.0001.0001.00000.000
Brazil1.0001.0001.0000.8560.7791.0001.0000.9479−0.197
Chile0.6750.9770.9660.8380.9970.9000.9910.90630.535
China1.0001.0001.0001.0001.0001.0001.0001.00000.000
Colombia0.8880.6840.8590.8640.8400.9790.9030.85960.535
Czech Rep.0.3890.5480.3690.4770.4250.5920.5290.47550.510
Egypt1.0001.0001.0001.0001.0001.0001.0001.00000.000
Hungary0.5460.4990.3890.4680.4900.5840.6440.51700.556
India0.8061.0001.0001.0001.0001.0001.0000.97220.573
Indonesia1.0001.0001.0001.0001.0001.0001.0001.00000.000
Israel0.4280.7850.3400.4550.4590.5550.4820.5005−0.082
Korea, South0.5950.4270.4110.4900.4770.5210.5390.49430.138
Malaysia0.7380.7270.5970.9380.9510.7750.8710.79960.519
Mexico0.8560.7780.9860.9950.7720.9671.0000.90770.377
Peru0.9610.9401.0001.0000.9981.0001.0000.98560.705
Philippines0.8840.8211.0001.0000.9781.0001.0000.95470.696
Poland0.7190.8000.6520.5880.5050.6640.7440.6674−0.275
Russia1.0000.5810.8801.0000.8391.0001.0000.90000.380
South Africa0.9340.9540.9471.0000.8160.9900.9900.94740.065
Thailand0.7720.9520.9510.9940.9260.9060.8530.90770.074
Turkey1.0001.0000.9830.9660.7600.9991.0000.9582−0.245
Venezuela0.8990.8381.0001.0001.0001.0001.0000.96250.703
Table 3:

Country scale efficiency in DEWA with window size 2

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9951.0000.9993−0.430
Brazil1.0000.9400.9360.8150.7521.0001.0000.9204−0.047
Chile0.6400.9920.9660.8170.9010.8760.9730.88070.417
China1.0001.0001.0001.0001.0001.0001.0001.00000.000
Colombia0.9200.7610.8450.8570.7630.9840.9330.86620.358
Czech Rep.0.3890.4750.3710.4200.4150.6110.5180.45690.656
Egypt1.0001.0001.0001.0001.0000.9621.0000.9945−0.430
Hungary0.5920.3720.3800.3890.4770.5260.6020.47670.387
India0.7620.9481.0001.0001.0000.8921.0000.94310.468
Indonesia1.0000.9001.0000.9831.0000.9931.0000.98230.396
Israel0.7330.6770.4180.3790.4200.5140.4920.5191−0.548
Korea, South0.5460.3770.4060.4070.4690.5020.5160.46040.319
Malaysia0.9550.5160.7120.9400.8920.6900.8850.79850.151
Mexico0.9880.8470.9890.9840.9110.9551.0000.95350.202
Peru0.9580.9821.0001.0000.9511.0001.0000.98440.326
Philippines0.7490.9971.0001.0000.9881.0001.0000.96200.571
Poland0.6470.6730.6660.5950.5490.8240.7400.67030.394
Russia1.0000.6360.8611.0000.8140.8871.0000.88540.236
South Africa0.9580.9450.9260.9110.8930.9110.9990.93480.037
Thailand0.9980.9380.9670.9300.9230.9370.8530.9351−0.815
Turkey1.0000.8640.9830.9530.7580.9431.0000.9288−0.109
Venezuela0.8950.9841.0001.0001.0001.0001.0000.98260.644
Table 4:

Country scale efficiency in DEWA with window size 3

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9760.9270.9861−0.740
Brazil0.8950.9070.9130.7870.7410.9141.0000.87960.127
Chile0.8140.9960.9750.8210.8550.8240.9920.89660.036
China1.0001.0001.0001.0001.0001.0001.0001.00000.000
Colombia0.9600.7820.8490.8330.7350.9390.9710.86680.190
Czech Rep.0.3390.4720.3730.4110.4140.6060.4990.44470.688
Egypt1.0001.0001.0000.9781.0000.9410.9320.9788−0.810
Hungary0.4720.3520.3640.3800.4500.5070.4720.42820.554
India0.7310.8481.0001.0001.0000.7701.0000.90700.365
Indonesia1.0000.8231.0000.9851.0000.9880.8690.9521−0.053
Israel0.6010.6210.4560.4190.3950.5430.5690.5149−0.243
Korea, South0.4320.3450.3960.3940.4490.4760.4510.42040.688
Malaysia0.9770.5950.7320.9440.8550.6710.8160.7986−0.118
Mexico0.9630.9520.9790.9910.9370.9490.8700.9488−0.669
Peru0.9900.9591.0001.0000.9741.0001.0000.98900.354
Philippines0.7700.9851.0000.9970.9910.9980.9830.96070.559
Poland0.6140.6210.6900.6470.6160.8090.5620.65120.142
Russia1.0000.6850.8561.0000.7910.8461.0000.88250.126
South Africa0.9880.9310.9060.8150.9310.9040.9740.9213−0.028
Thailand0.9400.8850.9720.9370.8870.8740.7610.8937−0.740
Turkey0.9530.9890.9870.9650.8000.9230.8790.9279−0.670
Venezuela0.8430.9791.0001.0001.0001.0000.9910.97340.606
Table 5:

Country scale efficiency in DEWA with window size 4

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9660.9190.9836−0.764
Brazil0.8950.9030.9110.7980.6850.9141.0000.87220.061
Chile0.8440.9970.9850.8300.7710.7170.9140.8654−0.456
China1.0001.0001.0000.9851.0001.0001.0000.99790.072
Colombia0.9320.7720.8450.8530.6670.8640.8670.8287–0.204
Czech Rep.0.3390.4660.3660.4070.4080.6470.5690.45750.757
Egypt1.0001.0001.0000.9831.0000.9250.8720.9685–0.802
Hungary0.4720.3490.3580.3740.4170.4680.4610.41410.430
India0.7310.8481.0000.9801.0000.7581.0000.90240.353
Indonesia1.0000.8051.0000.9841.0000.9640.8650.9456–0.075
Israel0.6010.6180.4540.4500.4020.6750.6220.54610.109
Korea, South0.4320.3450.3900.3820.4260.4760.4380.41280.611
Malaysia0.9480.7470.8430.9420.7940.6860.9740.8476–0.105
Mexico0.9890.9500.9840.9900.9970.9501.0000.97980.159
Peru0.9770.9591.0001.0000.9641.0001.0000.98580.419
Philippines0.7700.9871.0000.9950.9880.9840.9990.96050.571
Poland0.6140.6120.6900.681i) 0.690ii) 0.871iii) 0.5580.67360.283
Russia1.0000.6680.8641.0000.7760.7921.0000.87140.053
South Africa0.9720.9280.8830.8380.8910.9580.9780.92110.180
Thailand0.9310.9300.9800.9550.8590.7760.7950.8893–0.847
Turkey0.9530.9910.9860.9730.8540.8710.7910.9168–0.884
Venezuela0.8430.9871.0001.0001.0001.0000.9840.97340.561
Table 6:

Country scale efficiency in DEWA with window size 5

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9710.8440.9737–0.686
Brazil0.8950.8960.9090.7820.6460.7411.0000.8384–0.201
Chile0.8440.9990.9900.8230.7700.7010.8720.8570–0.556
China1.0001.0001.0000.9751.0001.0001.0000.99650.072
Colombia0.9320.7720.8460.8320.6620.8110.8140.8097–0.466
Czech Rep.0.3390.4600.3570.3960.3980.6510.5450.44940.724
Egypt1.0001.0001.0000.9881.0000.9250.9590.9818–0.723
Hungary0.4710.3470.3560.3580.3710.4560.3830.39170.006
India0.7310.8481.0000.9730.9810.7471.0000.89730.328
Indonesia1.0000.7981.0000.9891.0000.9340.8530.9392–0.154
Israel0.6000.6180.4540.4620.4540.8680.7690.60340.494
Korea, South0.4260.3450.3830.3580.3850.4530.3890.39130.268
Malaysia0.9700.7410.8400.9400.7990.6910.9640.8494–0.142
Mexico0.9850.9390.9830.9880.9940.9640.9920.97780.316
Peru0.9800.9591.0001.0000.9241.0001.0000.98050.099
Philippines0.8950.9841.0000.9930.9820.9740.9820.97290.430
Poland0.6140.6120.6880.7330.7840.9520.7250.72960.749
Russia1.0000.6330.8720.9980.7740.7980.9780.86460.055
South Africa0.9750.9500.9230.9050.8520.9430.9270.9249–0.457
Thailand0.9940.9650.9920.9730.8430.7450.7910.9002–0.915
Turkey0.9520.9900.9800.9930.9360.8350.9790.9522–0.434
Venezuela0.8810.9861.0001.0001.0001.0000.9740.97740.506
Table 7:

Country scale efficiency in DEWA with window size 6

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9720.8460.9739–0.686
Brazil0.8950.8960.8660.7870.6030.5340.7500.7614–0.799
Chile0.8441.0000.9940.8290.7810.7330.8840.8665–0.518
China1.0001.0000.9960.9611.0001.0001.0000.99380.100
Colombia0.9440.7720.8510.8430.6610.8220.7090.8003–0.668
Czech Rep.0.3390.4600.3540.3880.3910.6600.5470.44850.711
Egypt1.0001.0001.0000.9811.0000.9420.9560.9828–0.773
Hungary0.4710.3470.3490.3640.3580.4630.3790.3902–0.005
India0.7310.8481.0000.9600.9720.7871.0000.89970.412
Indonesia1.0000.7981.0000.9861.0000.9570.8600.9430–0.089
Israel0.6000.6180.5510.5750.5460.8850.8150.65580.672
Korea, South0.4260.3450.3760.3470.3730.4480.3840.38550.205
Malaysia0.9640.7360.7770.9280.8120.6860.9060.8300–0.198
Mexico0.9850.9390.9910.9900.9920.9990.9940.98440.561
Peru0.9870.9591.0001.0000.9231.0000.7390.9440–0.606
Philippines0.8950.9841.0000.9900.9820.9760.9930.97420.505
Poland0.6140.6120.7460.8210.8370.9590.8330.77450.870
Russia1.0000.6330.8740.9970.7740.8200.9680.86660.066
South Africa0.9750.9520.9820.9880.8530.9860.7980.9335–0.626
Thailand0.9950.9650.9980.9780.8700.7750.8180.9142–0.906
Turkey0.9520.9900.9800.9930.9470.8430.9830.9555–0.392
Venezuela0.8810.9861.0001.0001.0001.0000.9740.97740.506
Table 8:

Country scale efficiency in DEWA with window size 7

2002200320042005200720082009AverageCorrelation
Argentina1.0001.0001.0001.0001.0000.9720.8430.9735–0.685
Brazil0.8950.9080.8660.8360.5950.5000.6780.7539–0.866
Chile0.8441.0000.9940.8470.8150.7710.9500.8888–0.311
China1.0000.9970.9730.9151.0001.0001.0000.98360.166
Colombia0.9440.8470.8750.9300.7020.8710.7360.8438–0.665
Czech Rep.0.3390.4710.3540.3800.3730.6790.4450.43430.507
Egypt1.0001.0001.0000.9821.0000.9570.9130.9788–0.788
Hungary0.4710.3220.3390.3560.3290.4650.3630.3778–0.026
India0.7310.8191.0000.9190.9430.8331.0000.89220.548
Indonesia1.0000.8331.0000.9741.0000.9880.8680.9519–0.077
Israel0.6000.6180.5640.5900.5660.9000.8840.67460.736
Korea, South0.4260.3340.3580.3220.3390.4440.3180.3631–0.139
Malaysia0.9600.7350.7760.9360.8270.6710.9300.8337–0.133
Mexico0.9850.9390.9910.9910.9920.9990.9950.98470.565
Peru0.9870.9661.0001.0000.8771.0000.7390.9384–0.641
Philippines0.8950.9841.0000.9900.9830.9760.9910.97420.502
Poland0.6140.5770.8110.8530.8800.9700.8710.79640.849
Russia1.0000.6500.8810.9940.7820.8450.9870.87700.115
South Africa0.9750.9640.9940.9890.8881.0000.8750.9549–0.536
Thailand0.9960.9720.9980.9810.8740.7820.7850.9127–0.927
Turkey0.9520.9910.9790.9930.9720.8540.9840.9609–0.333
Venezuela0.8810.9931.0001.0001.0001.0000.9740.97850.478

References

Adler, N., E.Yazhemsky, and R.Tarverdyan. 2010. “A Framework to Measure the Relative Socio-Economic Performance of Developing Countries.” Socio-Economic Planning Sciences44:7388.10.1016/j.seps.2009.08.001Search in Google Scholar

Asmild, M., J. C.Paradi, V.Aggarwall, and C.Schaffnit. 2004. “Combining DEA Windows Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry.” Journal of Productivity Analysis21(1):6789.10.1023/B:PROD.0000012453.91326.ecSearch in Google Scholar

Banker, R. D., A.Charnes, and W. W.Cooper. 1984. “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science30(9):107892.10.1287/mnsc.30.9.1078Search in Google Scholar

Brockett, P. L., and B.Golany. 1996. “Using Rank Statistics for Determining Programmatic Efficiency Differences in Data Envelopment Analysis.” Management Science42(3):46672.10.1287/mnsc.42.3.466Search in Google Scholar

Brockett, P. L., B.Golany, and S.Li. 1998. “Analysis of Intertemporal Efficiency Trends Using Rank Statistics with an Application Evaluating the Macro Economic Performance of OECD Nations.” Journal of Productivity Analysis11(2):16982.10.1023/A:1007788117626Search in Google Scholar

Brockett, P. L., and J. H. B.Kemperman. 1980. “Statistical Recognition of Trends in Health Monitoring Systems.” Methods of Information in Medicine19(2):10612.10.1055/s-0038-1635269Search in Google Scholar

Brockett, P. L., and P.Levine. 1984. Statistics, Probability and Their Applications. London: Saunders.Search in Google Scholar

Cano, C. R., F. A.Carrillat, and F.Jaramillo. 2004. “A Meta-Analysis of the Relationship between Market Orientation and Business Performance: Evidence From Five Continents.” International Journal of Research in Marketing21(2):179200.10.1016/j.ijresmar.2003.07.001Search in Google Scholar

Cavusgil, S. T.1997. “Measuring the Potential of Emerging Markets: An Indexing Approach.” Business Horizons40(1):8791.10.1016/S0007-6813(97)90030-6Search in Google Scholar

Cavusgil, S. T., T.Kiyak, and S.Yeniyurt. 2004. “Complementary Approaches to Preliminary Foreign Market Opportunity Assessment: Country Clustering and Country Ranking.” Industrial Marketing Management33(7):60717.10.1016/j.indmarman.2003.10.005Search in Google Scholar

Charnes, A., C. T.Clark, W. W.Cooper, and B.Golany. 1985. “A Developmental Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the U.S. Air Forces.” Annals of Operations Research2:95112.10.1007/BF01874734Search in Google Scholar

Charnes, A., W. W.Cooper, and E.Rhodes. 1978. “Measuring the Efficiency of Decision Making Units.” European Journal of Operational Research2:42944.10.1016/0377-2217(78)90138-8Search in Google Scholar

Cook, W. D., and J.Zhu. 2006. “Rank Order Data in DEA: A General Framework.” European Journal of Operational Research174(2):102138.10.1016/j.ejor.2005.01.063Search in Google Scholar

Cooper, W. W., L. M.Seiford, and K.Tone. 2000. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Boston, MA: Kluwer Academic Publishers.Search in Google Scholar

Cowie, J. 2002. “Acquisition, Efficiency and Scale Economies: An Analysis of the British Bus Industry.” Transport Reviews22(2):14757.10.1080/014416400110076267Search in Google Scholar

Day, D. L., A. Y.Lewin, and H.Li. 1995. “Strategic Leaders or Strategic Groups: A Longitudinal Data Envelopment Analysis of the U.S. Brewing Industry.” European Journal of Operational Research80(1):61938.10.1016/0377-2217(94)00141-XSearch in Google Scholar

Dinc, M., K. E.Haynes, and M.Tarimcilar. 2003. “Integrating Models for Regional Development Decisions: A Policy Perspective.” The Annual of Regional Science37:3153.10.1007/s001680200093Search in Google Scholar

Dong, Li., and K. W.Glaister. 2006. “Motives and Partner Selection Criteria in International Strategic Alliances: Perspectives of Chinese Firms.” International Business Review15(6):577600.10.1016/j.ibusrev.2006.09.003Search in Google Scholar

Dyson, R. G., R.Allen, A. S.Camanho, V. V.Podinovski, C. S.Sarrico, and E. A.Shale. 2001. “Pitfalls and Protocols in DEA.” European Journal of Operational Research132:24559.10.1016/S0377-2217(00)00149-1Search in Google Scholar

Färe, R., S.Grosskopf, B.Lindgren, and P.Roos. 1994. “Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach.” In Data Envelopment Analysis: Theory, Methodology, and Application, edited by A.Charnes, W. W.Cooper, A. YLewin, and L. M.Seiford, 25372. Norwell, MA USA: Kluwer Academic Publishers.10.1007/978-94-011-0637-5_13Search in Google Scholar

Golany, B., and Y.Roll. 1989. “An Application Procedure for DEA.” OMEGA International Journal of Management Science17(3):23750.10.1016/0305-0483(89)90029-7Search in Google Scholar

Haas, D. A., F. H.Murphy, and R. A.Lancioni. 2003. “Managing Reverse Logistics Channels with Data Envelopment Analysis.” Transportation Journal42(3):5969.Search in Google Scholar

Hsu, M. K., G. H.Chao, and M. L.James. 2009. “An Efficiency Comparison of Top U.S. MBA Programs: Top Ten vs. Non-Top Ten MBA Programs.” Journal of Education for Business84(5):26974.10.3200/JOEB.84.5.269-274Search in Google Scholar

Hsu, M. K., X.Luo, and G. H.Chao. 2008. “The Fog of OECD and Non-OECD Country Efficiency: A Data Envelopment Analysis (DEA) Approach.” Journal of Developing Areas42(1):8193.10.1353/jda.0.0029Search in Google Scholar

Huang, Y., H. I.Mesak, M. K.Hsu, and H.Qu. 2012. “Dynamic Efficiency Assessment of the Chinese Hotel Industry.” Journal of Business Research65(1):5967.10.1016/j.jbusres.2011.07.015Search in Google Scholar

Kazley, A. S., and Y. A.Ozcan. 2009. “Electronic Medical Record Use and Efficiency: A DEA and Windows Analysis of Hospitals.” Socio-Economic Planning Sciences43:20916.10.1016/j.seps.2008.10.001Search in Google Scholar

Lovell, C. A. K., J. T.Pastor, and J. A.Turner. 1995. “Measuring Macroeconomic Performance in the OECD: A Comparison of European and Non-European Countries.” European Journal of Operational Research87(3):50718.10.1016/0377-2217(95)00226-XSearch in Google Scholar

Luo, X. 2003. “Evaluating the Profitability and Marketability Efficiency of Large Banks: An Application of Data Envelopment Analysis.” Journal of Business Research56(8):62735.10.1016/S0148-2963(01)00293-4Search in Google Scholar

Luo, X., M. K.Hsu, and A.Wahid. 2004. “A Comparison of Domestic and Foreign Bank Efficiency in Taiwan: An Application of Data Envelopment Analysis and Input Congestion Technique.” International Journal of Business and Economics3(1):17.Search in Google Scholar

Mullen, M. R., and S. Y.Sheng. 2007. “Extending and Comparing Cavusgil’s Overall Market Opportunity Indexes.” Advances in International Marketing17:21949.10.1016/S1474-7979(06)17008-8Search in Google Scholar

Pulina, M., C.Detotto, and A.Paba. 2010. “An Investigation into the Relationship between Size and Efficiency of the Italian Hospitality Sector: A Window DEA Approach.” European Journal of Operational Research204(3):61320.10.1016/j.ejor.2009.11.006Search in Google Scholar

Raab, R. L., and E. H.Feroz. 2007. “A Productivity Growth Accounting Approach to the Ranking of Developing and Developed Nations.” International Journal of Accounting42:396415.10.1016/j.intacc.2007.09.004Search in Google Scholar

Ramanathan, R.2006. “Evaluating the Comparative Performance of Countries of the Middle East and North Africa: A DEA Application.” Socio-Economic Planning Sciences40:15667.10.1016/j.seps.2004.10.002Search in Google Scholar

Ross, A., and C.Droge. 2002. “An Integrated Benchmarking Approaching to Distribution Center Performance Using DEA Modeling.” Journal of Operations Management20(1):1932.10.1016/S0272-6963(01)00087-0Search in Google Scholar

Sakarya, S., M.Eckman, and K. H.Hyllegard. 2007. “Market Selection for International Expansion: Assessing Opportunities in Emerging Markets.” International Marketing Review24(2):20838.10.1108/02651330710741820Search in Google Scholar

Sathye, M.2001. “X-Efficiency in Australian Banking: An Empirical Investigation.” Journal of Banking & Finance25(3):61330.10.1016/S0378-4266(00)00156-4Search in Google Scholar

Seiford, L. M., and J.Zhu. 1999. “Profitability and Marketability of the Top 55 U.S. Commercial Banks.” Management Science45(9):127088.10.1287/mnsc.45.9.1270Search in Google Scholar

Steenkamp, J.-B. E. M., and F. T.Hofstede. 2002. “International Market Segmentation: Issues and Perspectives.” International Journal of Research in Marketing19(3):185213.10.1016/S0167-8116(02)00076-9Search in Google Scholar

Published Online: 2014-9-18
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gej-2014-0008/html?lang=en
Scroll to top button