Abstract
Both experienced and novice international business practitioners may need to examine many country ranking reports on a frequent basis. Most of these reports focus on certain socio-economic variables and compute country rankings with a weighted average method, which does not distinguish between likely causes (i.e. inputs) and consequences (i.e. outputs). Through data envelopment window analysis (DEWA), the publicly accessible globalEDGE™ data were employed to compute the relative efficiency index for 22 countries from 2002 to 2009. Subsequently, the trend (averages) and the consistency (correlations) of relative country efficiency along the passage of years were examined to segment those countries into three groups: the “consistent performers,” the “sliding performers,” and the “improving performers” groups. This segmentation scheme may facilitate business practitioners when they develop their global expansion strategy. This paper introduces a complementary yet different longitudinal efficiency which could help multinational corporations’ top management teams and government decision makers evaluate the continuous performance of output/input efficiency.
Acknowledgment
The data belong to globalEDGE™ and Michigan State University, which holds copyright on the representation of the content, though not the content itself.
Appendix
Country scale efficiency in DEWA with window size 1
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Brazil | 1.000 | 1.000 | 1.000 | 0.856 | 0.779 | 1.000 | 1.000 | 0.9479 | −0.197 |
| Chile | 0.675 | 0.977 | 0.966 | 0.838 | 0.997 | 0.900 | 0.991 | 0.9063 | 0.535 |
| China | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Colombia | 0.888 | 0.684 | 0.859 | 0.864 | 0.840 | 0.979 | 0.903 | 0.8596 | 0.535 |
| Czech Rep. | 0.389 | 0.548 | 0.369 | 0.477 | 0.425 | 0.592 | 0.529 | 0.4755 | 0.510 |
| Egypt | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Hungary | 0.546 | 0.499 | 0.389 | 0.468 | 0.490 | 0.584 | 0.644 | 0.5170 | 0.556 |
| India | 0.806 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.9722 | 0.573 |
| Indonesia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Israel | 0.428 | 0.785 | 0.340 | 0.455 | 0.459 | 0.555 | 0.482 | 0.5005 | −0.082 |
| Korea, South | 0.595 | 0.427 | 0.411 | 0.490 | 0.477 | 0.521 | 0.539 | 0.4943 | 0.138 |
| Malaysia | 0.738 | 0.727 | 0.597 | 0.938 | 0.951 | 0.775 | 0.871 | 0.7996 | 0.519 |
| Mexico | 0.856 | 0.778 | 0.986 | 0.995 | 0.772 | 0.967 | 1.000 | 0.9077 | 0.377 |
| Peru | 0.961 | 0.940 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.9856 | 0.705 |
| Philippines | 0.884 | 0.821 | 1.000 | 1.000 | 0.978 | 1.000 | 1.000 | 0.9547 | 0.696 |
| Poland | 0.719 | 0.800 | 0.652 | 0.588 | 0.505 | 0.664 | 0.744 | 0.6674 | −0.275 |
| Russia | 1.000 | 0.581 | 0.880 | 1.000 | 0.839 | 1.000 | 1.000 | 0.9000 | 0.380 |
| South Africa | 0.934 | 0.954 | 0.947 | 1.000 | 0.816 | 0.990 | 0.990 | 0.9474 | 0.065 |
| Thailand | 0.772 | 0.952 | 0.951 | 0.994 | 0.926 | 0.906 | 0.853 | 0.9077 | 0.074 |
| Turkey | 1.000 | 1.000 | 0.983 | 0.966 | 0.760 | 0.999 | 1.000 | 0.9582 | −0.245 |
| Venezuela | 0.899 | 0.838 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.9625 | 0.703 |
Country scale efficiency in DEWA with window size 2
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 1.000 | 0.9993 | −0.430 |
| Brazil | 1.000 | 0.940 | 0.936 | 0.815 | 0.752 | 1.000 | 1.000 | 0.9204 | −0.047 |
| Chile | 0.640 | 0.992 | 0.966 | 0.817 | 0.901 | 0.876 | 0.973 | 0.8807 | 0.417 |
| China | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Colombia | 0.920 | 0.761 | 0.845 | 0.857 | 0.763 | 0.984 | 0.933 | 0.8662 | 0.358 |
| Czech Rep. | 0.389 | 0.475 | 0.371 | 0.420 | 0.415 | 0.611 | 0.518 | 0.4569 | 0.656 |
| Egypt | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.962 | 1.000 | 0.9945 | −0.430 |
| Hungary | 0.592 | 0.372 | 0.380 | 0.389 | 0.477 | 0.526 | 0.602 | 0.4767 | 0.387 |
| India | 0.762 | 0.948 | 1.000 | 1.000 | 1.000 | 0.892 | 1.000 | 0.9431 | 0.468 |
| Indonesia | 1.000 | 0.900 | 1.000 | 0.983 | 1.000 | 0.993 | 1.000 | 0.9823 | 0.396 |
| Israel | 0.733 | 0.677 | 0.418 | 0.379 | 0.420 | 0.514 | 0.492 | 0.5191 | −0.548 |
| Korea, South | 0.546 | 0.377 | 0.406 | 0.407 | 0.469 | 0.502 | 0.516 | 0.4604 | 0.319 |
| Malaysia | 0.955 | 0.516 | 0.712 | 0.940 | 0.892 | 0.690 | 0.885 | 0.7985 | 0.151 |
| Mexico | 0.988 | 0.847 | 0.989 | 0.984 | 0.911 | 0.955 | 1.000 | 0.9535 | 0.202 |
| Peru | 0.958 | 0.982 | 1.000 | 1.000 | 0.951 | 1.000 | 1.000 | 0.9844 | 0.326 |
| Philippines | 0.749 | 0.997 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 | 0.9620 | 0.571 |
| Poland | 0.647 | 0.673 | 0.666 | 0.595 | 0.549 | 0.824 | 0.740 | 0.6703 | 0.394 |
| Russia | 1.000 | 0.636 | 0.861 | 1.000 | 0.814 | 0.887 | 1.000 | 0.8854 | 0.236 |
| South Africa | 0.958 | 0.945 | 0.926 | 0.911 | 0.893 | 0.911 | 0.999 | 0.9348 | 0.037 |
| Thailand | 0.998 | 0.938 | 0.967 | 0.930 | 0.923 | 0.937 | 0.853 | 0.9351 | −0.815 |
| Turkey | 1.000 | 0.864 | 0.983 | 0.953 | 0.758 | 0.943 | 1.000 | 0.9288 | −0.109 |
| Venezuela | 0.895 | 0.984 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.9826 | 0.644 |
Country scale efficiency in DEWA with window size 3
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.976 | 0.927 | 0.9861 | −0.740 |
| Brazil | 0.895 | 0.907 | 0.913 | 0.787 | 0.741 | 0.914 | 1.000 | 0.8796 | 0.127 |
| Chile | 0.814 | 0.996 | 0.975 | 0.821 | 0.855 | 0.824 | 0.992 | 0.8966 | 0.036 |
| China | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0000 | 0.000 |
| Colombia | 0.960 | 0.782 | 0.849 | 0.833 | 0.735 | 0.939 | 0.971 | 0.8668 | 0.190 |
| Czech Rep. | 0.339 | 0.472 | 0.373 | 0.411 | 0.414 | 0.606 | 0.499 | 0.4447 | 0.688 |
| Egypt | 1.000 | 1.000 | 1.000 | 0.978 | 1.000 | 0.941 | 0.932 | 0.9788 | −0.810 |
| Hungary | 0.472 | 0.352 | 0.364 | 0.380 | 0.450 | 0.507 | 0.472 | 0.4282 | 0.554 |
| India | 0.731 | 0.848 | 1.000 | 1.000 | 1.000 | 0.770 | 1.000 | 0.9070 | 0.365 |
| Indonesia | 1.000 | 0.823 | 1.000 | 0.985 | 1.000 | 0.988 | 0.869 | 0.9521 | −0.053 |
| Israel | 0.601 | 0.621 | 0.456 | 0.419 | 0.395 | 0.543 | 0.569 | 0.5149 | −0.243 |
| Korea, South | 0.432 | 0.345 | 0.396 | 0.394 | 0.449 | 0.476 | 0.451 | 0.4204 | 0.688 |
| Malaysia | 0.977 | 0.595 | 0.732 | 0.944 | 0.855 | 0.671 | 0.816 | 0.7986 | −0.118 |
| Mexico | 0.963 | 0.952 | 0.979 | 0.991 | 0.937 | 0.949 | 0.870 | 0.9488 | −0.669 |
| Peru | 0.990 | 0.959 | 1.000 | 1.000 | 0.974 | 1.000 | 1.000 | 0.9890 | 0.354 |
| Philippines | 0.770 | 0.985 | 1.000 | 0.997 | 0.991 | 0.998 | 0.983 | 0.9607 | 0.559 |
| Poland | 0.614 | 0.621 | 0.690 | 0.647 | 0.616 | 0.809 | 0.562 | 0.6512 | 0.142 |
| Russia | 1.000 | 0.685 | 0.856 | 1.000 | 0.791 | 0.846 | 1.000 | 0.8825 | 0.126 |
| South Africa | 0.988 | 0.931 | 0.906 | 0.815 | 0.931 | 0.904 | 0.974 | 0.9213 | −0.028 |
| Thailand | 0.940 | 0.885 | 0.972 | 0.937 | 0.887 | 0.874 | 0.761 | 0.8937 | −0.740 |
| Turkey | 0.953 | 0.989 | 0.987 | 0.965 | 0.800 | 0.923 | 0.879 | 0.9279 | −0.670 |
| Venezuela | 0.843 | 0.979 | 1.000 | 1.000 | 1.000 | 1.000 | 0.991 | 0.9734 | 0.606 |
Country scale efficiency in DEWA with window size 4
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.966 | 0.919 | 0.9836 | −0.764 |
| Brazil | 0.895 | 0.903 | 0.911 | 0.798 | 0.685 | 0.914 | 1.000 | 0.8722 | 0.061 |
| Chile | 0.844 | 0.997 | 0.985 | 0.830 | 0.771 | 0.717 | 0.914 | 0.8654 | −0.456 |
| China | 1.000 | 1.000 | 1.000 | 0.985 | 1.000 | 1.000 | 1.000 | 0.9979 | 0.072 |
| Colombia | 0.932 | 0.772 | 0.845 | 0.853 | 0.667 | 0.864 | 0.867 | 0.8287 | –0.204 |
| Czech Rep. | 0.339 | 0.466 | 0.366 | 0.407 | 0.408 | 0.647 | 0.569 | 0.4575 | 0.757 |
| Egypt | 1.000 | 1.000 | 1.000 | 0.983 | 1.000 | 0.925 | 0.872 | 0.9685 | –0.802 |
| Hungary | 0.472 | 0.349 | 0.358 | 0.374 | 0.417 | 0.468 | 0.461 | 0.4141 | 0.430 |
| India | 0.731 | 0.848 | 1.000 | 0.980 | 1.000 | 0.758 | 1.000 | 0.9024 | 0.353 |
| Indonesia | 1.000 | 0.805 | 1.000 | 0.984 | 1.000 | 0.964 | 0.865 | 0.9456 | –0.075 |
| Israel | 0.601 | 0.618 | 0.454 | 0.450 | 0.402 | 0.675 | 0.622 | 0.5461 | 0.109 |
| Korea, South | 0.432 | 0.345 | 0.390 | 0.382 | 0.426 | 0.476 | 0.438 | 0.4128 | 0.611 |
| Malaysia | 0.948 | 0.747 | 0.843 | 0.942 | 0.794 | 0.686 | 0.974 | 0.8476 | –0.105 |
| Mexico | 0.989 | 0.950 | 0.984 | 0.990 | 0.997 | 0.950 | 1.000 | 0.9798 | 0.159 |
| Peru | 0.977 | 0.959 | 1.000 | 1.000 | 0.964 | 1.000 | 1.000 | 0.9858 | 0.419 |
| Philippines | 0.770 | 0.987 | 1.000 | 0.995 | 0.988 | 0.984 | 0.999 | 0.9605 | 0.571 |
| Poland | 0.614 | 0.612 | 0.690 | 0.681 | i) 0.690 | ii) 0.871 | iii) 0.558 | 0.6736 | 0.283 |
| Russia | 1.000 | 0.668 | 0.864 | 1.000 | 0.776 | 0.792 | 1.000 | 0.8714 | 0.053 |
| South Africa | 0.972 | 0.928 | 0.883 | 0.838 | 0.891 | 0.958 | 0.978 | 0.9211 | 0.180 |
| Thailand | 0.931 | 0.930 | 0.980 | 0.955 | 0.859 | 0.776 | 0.795 | 0.8893 | –0.847 |
| Turkey | 0.953 | 0.991 | 0.986 | 0.973 | 0.854 | 0.871 | 0.791 | 0.9168 | –0.884 |
| Venezuela | 0.843 | 0.987 | 1.000 | 1.000 | 1.000 | 1.000 | 0.984 | 0.9734 | 0.561 |
Country scale efficiency in DEWA with window size 5
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.844 | 0.9737 | –0.686 |
| Brazil | 0.895 | 0.896 | 0.909 | 0.782 | 0.646 | 0.741 | 1.000 | 0.8384 | –0.201 |
| Chile | 0.844 | 0.999 | 0.990 | 0.823 | 0.770 | 0.701 | 0.872 | 0.8570 | –0.556 |
| China | 1.000 | 1.000 | 1.000 | 0.975 | 1.000 | 1.000 | 1.000 | 0.9965 | 0.072 |
| Colombia | 0.932 | 0.772 | 0.846 | 0.832 | 0.662 | 0.811 | 0.814 | 0.8097 | –0.466 |
| Czech Rep. | 0.339 | 0.460 | 0.357 | 0.396 | 0.398 | 0.651 | 0.545 | 0.4494 | 0.724 |
| Egypt | 1.000 | 1.000 | 1.000 | 0.988 | 1.000 | 0.925 | 0.959 | 0.9818 | –0.723 |
| Hungary | 0.471 | 0.347 | 0.356 | 0.358 | 0.371 | 0.456 | 0.383 | 0.3917 | 0.006 |
| India | 0.731 | 0.848 | 1.000 | 0.973 | 0.981 | 0.747 | 1.000 | 0.8973 | 0.328 |
| Indonesia | 1.000 | 0.798 | 1.000 | 0.989 | 1.000 | 0.934 | 0.853 | 0.9392 | –0.154 |
| Israel | 0.600 | 0.618 | 0.454 | 0.462 | 0.454 | 0.868 | 0.769 | 0.6034 | 0.494 |
| Korea, South | 0.426 | 0.345 | 0.383 | 0.358 | 0.385 | 0.453 | 0.389 | 0.3913 | 0.268 |
| Malaysia | 0.970 | 0.741 | 0.840 | 0.940 | 0.799 | 0.691 | 0.964 | 0.8494 | –0.142 |
| Mexico | 0.985 | 0.939 | 0.983 | 0.988 | 0.994 | 0.964 | 0.992 | 0.9778 | 0.316 |
| Peru | 0.980 | 0.959 | 1.000 | 1.000 | 0.924 | 1.000 | 1.000 | 0.9805 | 0.099 |
| Philippines | 0.895 | 0.984 | 1.000 | 0.993 | 0.982 | 0.974 | 0.982 | 0.9729 | 0.430 |
| Poland | 0.614 | 0.612 | 0.688 | 0.733 | 0.784 | 0.952 | 0.725 | 0.7296 | 0.749 |
| Russia | 1.000 | 0.633 | 0.872 | 0.998 | 0.774 | 0.798 | 0.978 | 0.8646 | 0.055 |
| South Africa | 0.975 | 0.950 | 0.923 | 0.905 | 0.852 | 0.943 | 0.927 | 0.9249 | –0.457 |
| Thailand | 0.994 | 0.965 | 0.992 | 0.973 | 0.843 | 0.745 | 0.791 | 0.9002 | –0.915 |
| Turkey | 0.952 | 0.990 | 0.980 | 0.993 | 0.936 | 0.835 | 0.979 | 0.9522 | –0.434 |
| Venezuela | 0.881 | 0.986 | 1.000 | 1.000 | 1.000 | 1.000 | 0.974 | 0.9774 | 0.506 |
Country scale efficiency in DEWA with window size 6
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.972 | 0.846 | 0.9739 | –0.686 |
| Brazil | 0.895 | 0.896 | 0.866 | 0.787 | 0.603 | 0.534 | 0.750 | 0.7614 | –0.799 |
| Chile | 0.844 | 1.000 | 0.994 | 0.829 | 0.781 | 0.733 | 0.884 | 0.8665 | –0.518 |
| China | 1.000 | 1.000 | 0.996 | 0.961 | 1.000 | 1.000 | 1.000 | 0.9938 | 0.100 |
| Colombia | 0.944 | 0.772 | 0.851 | 0.843 | 0.661 | 0.822 | 0.709 | 0.8003 | –0.668 |
| Czech Rep. | 0.339 | 0.460 | 0.354 | 0.388 | 0.391 | 0.660 | 0.547 | 0.4485 | 0.711 |
| Egypt | 1.000 | 1.000 | 1.000 | 0.981 | 1.000 | 0.942 | 0.956 | 0.9828 | –0.773 |
| Hungary | 0.471 | 0.347 | 0.349 | 0.364 | 0.358 | 0.463 | 0.379 | 0.3902 | –0.005 |
| India | 0.731 | 0.848 | 1.000 | 0.960 | 0.972 | 0.787 | 1.000 | 0.8997 | 0.412 |
| Indonesia | 1.000 | 0.798 | 1.000 | 0.986 | 1.000 | 0.957 | 0.860 | 0.9430 | –0.089 |
| Israel | 0.600 | 0.618 | 0.551 | 0.575 | 0.546 | 0.885 | 0.815 | 0.6558 | 0.672 |
| Korea, South | 0.426 | 0.345 | 0.376 | 0.347 | 0.373 | 0.448 | 0.384 | 0.3855 | 0.205 |
| Malaysia | 0.964 | 0.736 | 0.777 | 0.928 | 0.812 | 0.686 | 0.906 | 0.8300 | –0.198 |
| Mexico | 0.985 | 0.939 | 0.991 | 0.990 | 0.992 | 0.999 | 0.994 | 0.9844 | 0.561 |
| Peru | 0.987 | 0.959 | 1.000 | 1.000 | 0.923 | 1.000 | 0.739 | 0.9440 | –0.606 |
| Philippines | 0.895 | 0.984 | 1.000 | 0.990 | 0.982 | 0.976 | 0.993 | 0.9742 | 0.505 |
| Poland | 0.614 | 0.612 | 0.746 | 0.821 | 0.837 | 0.959 | 0.833 | 0.7745 | 0.870 |
| Russia | 1.000 | 0.633 | 0.874 | 0.997 | 0.774 | 0.820 | 0.968 | 0.8666 | 0.066 |
| South Africa | 0.975 | 0.952 | 0.982 | 0.988 | 0.853 | 0.986 | 0.798 | 0.9335 | –0.626 |
| Thailand | 0.995 | 0.965 | 0.998 | 0.978 | 0.870 | 0.775 | 0.818 | 0.9142 | –0.906 |
| Turkey | 0.952 | 0.990 | 0.980 | 0.993 | 0.947 | 0.843 | 0.983 | 0.9555 | –0.392 |
| Venezuela | 0.881 | 0.986 | 1.000 | 1.000 | 1.000 | 1.000 | 0.974 | 0.9774 | 0.506 |
Country scale efficiency in DEWA with window size 7
| 2002 | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | Average | Correlation | |
| Argentina | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.972 | 0.843 | 0.9735 | –0.685 |
| Brazil | 0.895 | 0.908 | 0.866 | 0.836 | 0.595 | 0.500 | 0.678 | 0.7539 | –0.866 |
| Chile | 0.844 | 1.000 | 0.994 | 0.847 | 0.815 | 0.771 | 0.950 | 0.8888 | –0.311 |
| China | 1.000 | 0.997 | 0.973 | 0.915 | 1.000 | 1.000 | 1.000 | 0.9836 | 0.166 |
| Colombia | 0.944 | 0.847 | 0.875 | 0.930 | 0.702 | 0.871 | 0.736 | 0.8438 | –0.665 |
| Czech Rep. | 0.339 | 0.471 | 0.354 | 0.380 | 0.373 | 0.679 | 0.445 | 0.4343 | 0.507 |
| Egypt | 1.000 | 1.000 | 1.000 | 0.982 | 1.000 | 0.957 | 0.913 | 0.9788 | –0.788 |
| Hungary | 0.471 | 0.322 | 0.339 | 0.356 | 0.329 | 0.465 | 0.363 | 0.3778 | –0.026 |
| India | 0.731 | 0.819 | 1.000 | 0.919 | 0.943 | 0.833 | 1.000 | 0.8922 | 0.548 |
| Indonesia | 1.000 | 0.833 | 1.000 | 0.974 | 1.000 | 0.988 | 0.868 | 0.9519 | –0.077 |
| Israel | 0.600 | 0.618 | 0.564 | 0.590 | 0.566 | 0.900 | 0.884 | 0.6746 | 0.736 |
| Korea, South | 0.426 | 0.334 | 0.358 | 0.322 | 0.339 | 0.444 | 0.318 | 0.3631 | –0.139 |
| Malaysia | 0.960 | 0.735 | 0.776 | 0.936 | 0.827 | 0.671 | 0.930 | 0.8337 | –0.133 |
| Mexico | 0.985 | 0.939 | 0.991 | 0.991 | 0.992 | 0.999 | 0.995 | 0.9847 | 0.565 |
| Peru | 0.987 | 0.966 | 1.000 | 1.000 | 0.877 | 1.000 | 0.739 | 0.9384 | –0.641 |
| Philippines | 0.895 | 0.984 | 1.000 | 0.990 | 0.983 | 0.976 | 0.991 | 0.9742 | 0.502 |
| Poland | 0.614 | 0.577 | 0.811 | 0.853 | 0.880 | 0.970 | 0.871 | 0.7964 | 0.849 |
| Russia | 1.000 | 0.650 | 0.881 | 0.994 | 0.782 | 0.845 | 0.987 | 0.8770 | 0.115 |
| South Africa | 0.975 | 0.964 | 0.994 | 0.989 | 0.888 | 1.000 | 0.875 | 0.9549 | –0.536 |
| Thailand | 0.996 | 0.972 | 0.998 | 0.981 | 0.874 | 0.782 | 0.785 | 0.9127 | –0.927 |
| Turkey | 0.952 | 0.991 | 0.979 | 0.993 | 0.972 | 0.854 | 0.984 | 0.9609 | –0.333 |
| Venezuela | 0.881 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 0.974 | 0.9785 | 0.478 |
References
Adler, N., E.Yazhemsky, and R.Tarverdyan. 2010. “A Framework to Measure the Relative Socio-Economic Performance of Developing Countries.” Socio-Economic Planning Sciences44:73–88.10.1016/j.seps.2009.08.001Search in Google Scholar
Asmild, M., J. C.Paradi, V.Aggarwall, and C.Schaffnit. 2004. “Combining DEA Windows Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry.” Journal of Productivity Analysis21(1):67–89.10.1023/B:PROD.0000012453.91326.ecSearch in Google Scholar
Banker, R. D., A.Charnes, and W. W.Cooper. 1984. “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science30(9):1078–92.10.1287/mnsc.30.9.1078Search in Google Scholar
Brockett, P. L., and B.Golany. 1996. “Using Rank Statistics for Determining Programmatic Efficiency Differences in Data Envelopment Analysis.” Management Science42(3):466–72.10.1287/mnsc.42.3.466Search in Google Scholar
Brockett, P. L., B.Golany, and S.Li. 1998. “Analysis of Intertemporal Efficiency Trends Using Rank Statistics with an Application Evaluating the Macro Economic Performance of OECD Nations.” Journal of Productivity Analysis11(2):169–82.10.1023/A:1007788117626Search in Google Scholar
Brockett, P. L., and J. H. B.Kemperman. 1980. “Statistical Recognition of Trends in Health Monitoring Systems.” Methods of Information in Medicine19(2):106–12.10.1055/s-0038-1635269Search in Google Scholar
Brockett, P. L., and P.Levine. 1984. Statistics, Probability and Their Applications. London: Saunders.Search in Google Scholar
Cano, C. R., F. A.Carrillat, and F.Jaramillo. 2004. “A Meta-Analysis of the Relationship between Market Orientation and Business Performance: Evidence From Five Continents.” International Journal of Research in Marketing21(2):179–200.10.1016/j.ijresmar.2003.07.001Search in Google Scholar
Cavusgil, S. T.1997. “Measuring the Potential of Emerging Markets: An Indexing Approach.” Business Horizons40(1):87–91.10.1016/S0007-6813(97)90030-6Search in Google Scholar
Cavusgil, S. T., T.Kiyak, and S.Yeniyurt. 2004. “Complementary Approaches to Preliminary Foreign Market Opportunity Assessment: Country Clustering and Country Ranking.” Industrial Marketing Management33(7):607–17.10.1016/j.indmarman.2003.10.005Search in Google Scholar
Charnes, A., C. T.Clark, W. W.Cooper, and B.Golany. 1985. “A Developmental Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the U.S. Air Forces.” Annals of Operations Research2:95–112.10.1007/BF01874734Search in Google Scholar
Charnes, A., W. W.Cooper, and E.Rhodes. 1978. “Measuring the Efficiency of Decision Making Units.” European Journal of Operational Research2:429–44.10.1016/0377-2217(78)90138-8Search in Google Scholar
Cook, W. D., and J.Zhu. 2006. “Rank Order Data in DEA: A General Framework.” European Journal of Operational Research174(2):1021–38.10.1016/j.ejor.2005.01.063Search in Google Scholar
Cooper, W. W., L. M.Seiford, and K.Tone. 2000. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Boston, MA: Kluwer Academic Publishers.Search in Google Scholar
Cowie, J. 2002. “Acquisition, Efficiency and Scale Economies: An Analysis of the British Bus Industry.” Transport Reviews22(2):147–57.10.1080/014416400110076267Search in Google Scholar
Day, D. L., A. Y.Lewin, and H.Li. 1995. “Strategic Leaders or Strategic Groups: A Longitudinal Data Envelopment Analysis of the U.S. Brewing Industry.” European Journal of Operational Research80(1):619–38.10.1016/0377-2217(94)00141-XSearch in Google Scholar
Dinc, M., K. E.Haynes, and M.Tarimcilar. 2003. “Integrating Models for Regional Development Decisions: A Policy Perspective.” The Annual of Regional Science37:31–53.10.1007/s001680200093Search in Google Scholar
Dong, Li., and K. W.Glaister. 2006. “Motives and Partner Selection Criteria in International Strategic Alliances: Perspectives of Chinese Firms.” International Business Review15(6):577–600.10.1016/j.ibusrev.2006.09.003Search in Google Scholar
Dyson, R. G., R.Allen, A. S.Camanho, V. V.Podinovski, C. S.Sarrico, and E. A.Shale. 2001. “Pitfalls and Protocols in DEA.” European Journal of Operational Research132:245–59.10.1016/S0377-2217(00)00149-1Search in Google Scholar
Färe, R., S.Grosskopf, B.Lindgren, and P.Roos. 1994. “Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach.” In Data Envelopment Analysis: Theory, Methodology, and Application, edited by A.Charnes, W. W.Cooper, A. YLewin, and L. M.Seiford, 253–72. Norwell, MA USA: Kluwer Academic Publishers.10.1007/978-94-011-0637-5_13Search in Google Scholar
Golany, B., and Y.Roll. 1989. “An Application Procedure for DEA.” OMEGA International Journal of Management Science17(3):237–50.10.1016/0305-0483(89)90029-7Search in Google Scholar
Haas, D. A., F. H.Murphy, and R. A.Lancioni. 2003. “Managing Reverse Logistics Channels with Data Envelopment Analysis.” Transportation Journal42(3):59–69.Search in Google Scholar
Hsu, M. K., G. H.Chao, and M. L.James. 2009. “An Efficiency Comparison of Top U.S. MBA Programs: Top Ten vs. Non-Top Ten MBA Programs.” Journal of Education for Business84(5):269–74.10.3200/JOEB.84.5.269-274Search in Google Scholar
Hsu, M. K., X.Luo, and G. H.Chao. 2008. “The Fog of OECD and Non-OECD Country Efficiency: A Data Envelopment Analysis (DEA) Approach.” Journal of Developing Areas42(1):81–93.10.1353/jda.0.0029Search in Google Scholar
Huang, Y., H. I.Mesak, M. K.Hsu, and H.Qu. 2012. “Dynamic Efficiency Assessment of the Chinese Hotel Industry.” Journal of Business Research65(1):59–67.10.1016/j.jbusres.2011.07.015Search in Google Scholar
Kazley, A. S., and Y. A.Ozcan. 2009. “Electronic Medical Record Use and Efficiency: A DEA and Windows Analysis of Hospitals.” Socio-Economic Planning Sciences43:209–16.10.1016/j.seps.2008.10.001Search in Google Scholar
Lovell, C. A. K., J. T.Pastor, and J. A.Turner. 1995. “Measuring Macroeconomic Performance in the OECD: A Comparison of European and Non-European Countries.” European Journal of Operational Research87(3):507–18.10.1016/0377-2217(95)00226-XSearch in Google Scholar
Luo, X. 2003. “Evaluating the Profitability and Marketability Efficiency of Large Banks: An Application of Data Envelopment Analysis.” Journal of Business Research56(8):627–35.10.1016/S0148-2963(01)00293-4Search in Google Scholar
Luo, X., M. K.Hsu, and A.Wahid. 2004. “A Comparison of Domestic and Foreign Bank Efficiency in Taiwan: An Application of Data Envelopment Analysis and Input Congestion Technique.” International Journal of Business and Economics3(1):1–7.Search in Google Scholar
Mullen, M. R., and S. Y.Sheng. 2007. “Extending and Comparing Cavusgil’s Overall Market Opportunity Indexes.” Advances in International Marketing17:219–49.10.1016/S1474-7979(06)17008-8Search in Google Scholar
Pulina, M., C.Detotto, and A.Paba. 2010. “An Investigation into the Relationship between Size and Efficiency of the Italian Hospitality Sector: A Window DEA Approach.” European Journal of Operational Research204(3):613–20.10.1016/j.ejor.2009.11.006Search in Google Scholar
Raab, R. L., and E. H.Feroz. 2007. “A Productivity Growth Accounting Approach to the Ranking of Developing and Developed Nations.” International Journal of Accounting42:396–415.10.1016/j.intacc.2007.09.004Search in Google Scholar
Ramanathan, R.2006. “Evaluating the Comparative Performance of Countries of the Middle East and North Africa: A DEA Application.” Socio-Economic Planning Sciences40:156–67.10.1016/j.seps.2004.10.002Search in Google Scholar
Ross, A., and C.Droge. 2002. “An Integrated Benchmarking Approaching to Distribution Center Performance Using DEA Modeling.” Journal of Operations Management20(1):19–32.10.1016/S0272-6963(01)00087-0Search in Google Scholar
Sakarya, S., M.Eckman, and K. H.Hyllegard. 2007. “Market Selection for International Expansion: Assessing Opportunities in Emerging Markets.” International Marketing Review24(2):208–38.10.1108/02651330710741820Search in Google Scholar
Sathye, M.2001. “X-Efficiency in Australian Banking: An Empirical Investigation.” Journal of Banking & Finance25(3):613–30.10.1016/S0378-4266(00)00156-4Search in Google Scholar
Seiford, L. M., and J.Zhu. 1999. “Profitability and Marketability of the Top 55 U.S. Commercial Banks.” Management Science45(9):1270–88.10.1287/mnsc.45.9.1270Search in Google Scholar
Steenkamp, J.-B. E. M., and F. T.Hofstede. 2002. “International Market Segmentation: Issues and Perspectives.” International Journal of Research in Marketing19(3):185–213.10.1016/S0167-8116(02)00076-9Search in Google Scholar
©2014 by De Gruyter
Articles in the same Issue
- Frontmatter
- Articles
- Network Analysis of World Trade using the BACI-CEPII Dataset
- Global Market Evaluation: A Longitudinal Efficiency Assessment Approach
- Examining the “Balance of Payments Stages” Hypothesis
- The Influence of Measures of Economic Freedom on FDI: A Comparison of Western Europe and Sub-Saharan Africa
- What’s News
- Regionalism in Trade: An Overview of the Last Half-Century
- Offshore Financial Centers in the Global Capital Network
- Foreign Capital Inflow and Real Exchange Rate Appreciation in Developing Economies: Theory and Empirical Evidence
- Trade Liberalization and Productivity Performance: Evidence from the Australian Passenger Motor Vehicle Industry
Articles in the same Issue
- Frontmatter
- Articles
- Network Analysis of World Trade using the BACI-CEPII Dataset
- Global Market Evaluation: A Longitudinal Efficiency Assessment Approach
- Examining the “Balance of Payments Stages” Hypothesis
- The Influence of Measures of Economic Freedom on FDI: A Comparison of Western Europe and Sub-Saharan Africa
- What’s News
- Regionalism in Trade: An Overview of the Last Half-Century
- Offshore Financial Centers in the Global Capital Network
- Foreign Capital Inflow and Real Exchange Rate Appreciation in Developing Economies: Theory and Empirical Evidence
- Trade Liberalization and Productivity Performance: Evidence from the Australian Passenger Motor Vehicle Industry