Home Technology A compact multiband frequency reconfigurable antenna integrated with sextuple band artificial magnetic conductor for heterogeneous wireless applications
Article
Licensed
Unlicensed Requires Authentication

A compact multiband frequency reconfigurable antenna integrated with sextuple band artificial magnetic conductor for heterogeneous wireless applications

  • Vellaichamy Rajavel ORCID logo EMAIL logo and Dibyendu Ghoshal
Published/Copyright: January 10, 2025
Become an author with De Gruyter Brill

Abstract

As wireless communication continues to grow, reconfigurable antenna technologies have emerged as an optimal choice for multiband antennas. This study incorporates a 4 × 4 Artificial Magnetic Conductor (AMC) surface into a compact multiband frequency-reconfigurable antenna for diverse wireless applications. The antenna featured interconnected octagonal and rectangular patch slots in a radiating element with a defective ground structure. The antenna uses two-pin diodes to switch between four distinct working modes that produce dual wideband, triple-band, and quad-band responses. The AMC unit cell exhibits sextuple-band behavior at 2.5 GHz, 5 GHz, 6.5 GHz, 8.7 GHz, 10.5 GHz, and 11.4 GHz, with Double Negative material properties. The integrated antenna with dimension 50 × 50 × 10.2 mm3 achieves an average gain enhancement of 3.29 dB across its four switching states, with a peak Front-to-Back Ratio (FBR) reaching 31.23 dB, a notable radiation efficiency of 87 % with an average back lobe gain reduction of 13.75 dB. The Specific Absorption Rate (SAR) reached a minimum of 0.0594 W/kg with an overall average reduction of 93.25 %. The antenna was tested in an anechoic chamber using a vector network analyzer, and the results matched the simulations. Ultimately, the antenna design offers a compact, low-profile configuration that is ideal for versatile wireless applications with multiple bands and modes.


Corresponding author: Vellaichamy Rajavel, Department of ECE, National Institute of Technology Agartala, Tripura, India, E-mail:

Acknowledgments

We would like to extend our sincere appreciation to the Microwave and Measurement Laboratory at the Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, for their invaluable support and resources, which greatly contributed to the success of this research. Also, we express our gratitude to Mr. Susovan Ghosh, Technical Assistant at the National Institute of Technology Agartala, for his valuable assistance in attaching the antenna to the AMC surface and SMA connector.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Author 1 contributed to methodology development, implementation, simulation, and manuscript writing. Author 2 contributed to conceptualization, supervision, and reviewing and editing the manuscript draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] R. Cicchetti, V. Cicchetti, A. Faraone, L. Foged, and O. Testa, “A wideband high-gain dielectric horn-lens antenna for wireless communications and UWB applications,” IEEE Trans. Antenn. Propag., vol. 71, no. 2, pp. 1304–1318, 2023, https://doi.org/10.1109/TAP.2022.3228384.Search in Google Scholar

[2] Thenkumari, K., Sankaran, K. S., and Mathana, J. M., “Design and implementation of Frequency reconfigurable antenna for Wi-Fi applications,” Eng. Sci., vol. 23, no. 1, pp. 1–11, 2023. https://doi.org/10.30919/es8d876.Search in Google Scholar

[3] A. H. Naqvi and S. Lim, “A beam-steering antenna with a fluidically programmable metasurface,” IEEE Trans. Antenn. Propag., vol. 67, no. 6, pp. 3704–3711, 2019, https://doi.org/10.1109/TAP.2019.2905690.Search in Google Scholar

[4] A. Raj, D. C. Dhubkarya, D. K. Srivastava, and D. Mandal, “Design and analysis of square shape slot cut high gain Sierpinski carpet fractal antenna for wireless applications,” Microw. Opt. Technol. Lett., vol. 65, no. 8, pp. 2337–2343, 2023, https://doi.org/10.1002/mop.33687.Search in Google Scholar

[5] X. Deng, Y. Li, X. Li, L. Bao, and Y. Tian, “Research on frequency reconfigurable bowtie antenna loaded with triangular shaped fractal parasitic elements,” Electromagnetics, vol. 43, no. 2, pp. 129–136, 2023, https://doi.org/10.1080/02726343.2023.2192103.Search in Google Scholar

[6] B. M. Yousef, A. M. Ameen, A. Desai, H. T. Hsu, V. Dhasarathan, and A. A. Ibrahim, “Defected ground structure-based wideband circularly polarized 4-port MIMO antenna for future Wi-Fi 6E applications,” AEU – Int. J. Electron. Commun., vol. 170, p. 154815, 2023, https://doi.org/10.1016/j.aeue.2023.154815.Search in Google Scholar

[7] T. Islam and S. Roy, “Low-profile meander line multiband antenna for wireless body area network (WBAN) applications with SAR analysis,” Electronics, vol. 12, no. 6, p. 1416, 2023, https://doi.org/10.3390/electronics12061416.Search in Google Scholar

[8] M. D. S. U. Afsar, M. R. I. Faruque, S. Abdullah, M. T. Islam, M. U. Khandaker, and K. S. Al-Mugren, “An innovative compact split-ring-resonator-based power tiller wheel-shaped metamaterial for quad-band wireless communication,” Materials, vol. 16, no. 3, p. 1137, 2023, https://doi.org/10.3390/ma16031137.Search in Google Scholar PubMed PubMed Central

[9] Keshari Behera, H., Midya, M., and Prasad Mishra, L., “Circularly polarized inverted F antenna for UWB application,” Mater. Today Proc., vol. 5, no. 9, pp. 1–6, 2023. https://doi.org/10.1016/j.matpr.2023.05.299.Search in Google Scholar

[10] Romputtal, A. and Phongcharoenpanich, C., “T-slot antennas-embedded ZigBee wireless sensor network system for IoT-enabled monitoring and control systems,” IEEE Internet Things J., vol. 10, no. 23, p. 1, 2023. https://doi.org/10.1109/JIOT.2023.3284005.Search in Google Scholar

[11] P. Moukala Mpele, F. Moukanda Mbango, D. B. O. Konditi, C. L. Bamy, and F. Urimubenshi, “Compact quadband two-port antenna with metamaterial cell-inspired decoupling parasitic element for mobile wireless applications,” Frequenz, vol. 77, nos. 1–2, pp. 63–76, 2023, https://doi.org/10.1515/freq-2021-0299.Search in Google Scholar

[12] Y. Gao, J. Wang, X. Wang, and Z. Sun, “Extremely low-profile dual-band antenna based on single-layer square microstrip patch for 5G mobile application,” IEEE Antenn. Wireless Propag. Lett., vol. 22, no. 7, pp. 1761–1765, 2023, https://doi.org/10.1109/LAWP.2023.3262927.Search in Google Scholar

[13] S. Gao, L. Chang, A. Zhang, Y. Li, and Z. Zhang, “Small-volume microstrip patch antennas exactly covering Wi-Fi 6 bands of 2.4–2.5 GHz and 5.15–5.85 GHz,” IEEE Trans. Antenn. Propag., vol. 71, no. 7, pp. 5739–5748, 2023, https://doi.org/10.1109/TAP.2023.3273920.Search in Google Scholar

[14] W. Zhang, Y. Li, K. Wei, and Z. Zhang, “A dual-band MIMO antenna system for 2.4/5 GHz WLAN applications,” IEEE Trans. Antenn. Propag., vol. 71, no. 7, pp. 5749–5758, 2023, https://doi.org/10.1109/TAP.2023.3277208.Search in Google Scholar

[15] Z. Zhang, M. Li, Q. Dai, M. C. Tang, and L. Zhu, “Compact, wideband, dual-band polarization and pattern diversity antenna for vehicle communications,” IEEE Trans. Antenn. Propag., vol. 71, no. 5, pp. 4528–4533, 2023, https://doi.org/10.1109/TAP.2023.3243855.Search in Google Scholar

[16] X. Zhai, S. Yan, B. Wang, and J. Zhang, “A low-profile broadband dual-polarized omnidirectional antenna for LTE applications,” IEEE Antenn. Wireless Propag. Lett., vol. 22, no. 7, pp. 1696–1700, 2023, https://doi.org/10.1109/LAWP.2023.3260255.Search in Google Scholar

[17] C. Y. D. Sim, J. Kulkarni, S. H. Wang, S. Y. Zheng, Z. H. Lin, and S. C. Chen, “Low-profile laptop antenna design for Wi-Fi 6E band,” IEEE Antenn. Wireless Propag. Lett., vol. 22, no. 1, pp. 79–83, 2023, https://doi.org/10.1109/LAWP.2022.3202697.Search in Google Scholar

[18] H. Jiang, N. Yan, K. Ma, and Y. Wang, “A wideband circularly polarized dielectric patch antenna with a modified air cavity for Wi-Fi 6 and Wi-Fi 6E applications,” IEEE Antenn. Wireless Propag. Lett., vol. 22, no. 1, pp. 213–217, 2023, https://doi.org/10.1109/LAWP.2022.3201077.Search in Google Scholar

[19] P. B. Samal, S. J. Chen, and C. Fumeaux, “Wearable textile multiband antenna for WBAN applications,” IEEE Trans. Antenn. Propag., vol. 71, no. 2, pp. 1391–1402, 2023, https://doi.org/10.1109/TAP.2022.3230550.Search in Google Scholar

[20] S. Gupta, S. Patil, C. Dalela, and B. K. Kanaujia, “Circularly polarized fractal defected ground monopole antenna for Bluetooth/LTE/CNSS/S-band and CA-band applications,” Electromagnetics, vol. 42, no. 7, pp. 485–497, 2022, https://doi.org/10.1080/02726343.2022.2154466.Search in Google Scholar

[21] C. Yu, S. Yang, Y. Chen, and W. Wang, “Investigation of a quad-band microstrip antenna using a DNG-MTM radiation patch,” J. Electromagn. Waves Appl., vol. 37, nos. 7–9, pp. 871–883, 2023, https://doi.org/10.1080/09205071.2023.2214683.Search in Google Scholar

[22] J. Padhi, G. Shrikanth Reddy, and A. Kumar, “Multiple stubs loaded efficient electrically small antenna for DCS/WiMAX/5G NR-n77/n78 applications,” J. Electromagn. Waves Appl., vol. 37, no. 2, pp. 271–281, 2023, https://doi.org/10.1080/09205071.2022.2131470.Search in Google Scholar

[23] J. Sharad Kulkarni and C. Y. Desmond Sim, “Low-profile, multiband & wideband ‘C-shaped’ monopole antenna for 5G and WLAN applications,”in 2020 International Conf on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, 2020, pp. 366–371.10.1109/ICRAMET51080.2020.9298569Search in Google Scholar

[24] J. Kulkarni, C. Y. D. Sim, A. K. Poddar, U. L. Rohde, and A. G. Alharbi, “A compact circularly polarized rotated L-shaped antenna with J-shaped defected ground structure for WLAN and V2X applications,” Prog. Electromagn. Res. Lett., vol. 102, pp. 135–143, 2022, https://doi.org/10.2528/PIERL22010305.Search in Google Scholar

[25] Bhattacharjee, A. and Dwari, S., “A circularly polarised monopole antenna with switchable frequency, pattern and polarisation,” Int. J. Electron., vol. 110, no. 10, pp. 1–23, 2022. https://doi.org/10.1080/00207217.2022.2118855.Search in Google Scholar

[26] W. A. Awan, S. I. Naqvi, W. A. E. Ali, “Design and realization of a frequency reconfigurable antenna with wide, dual, and single-band operations for compact sized wireless applications,” Electronics, vol. 10, no. 11, p. 1321, 2021, https://doi.org/10.3390/electronics10111321.Search in Google Scholar

[27] A. A. Ibrahim, W. A. E. Ali, M. Alathbah, and H. A. Mohamed, “A frequency reconfigurable folded antenna for cognitive radio communication,” Micromachines, vol. 14, no. 3, p. 527, 2023, https://doi.org/10.3390/mi14030527.Search in Google Scholar PubMed PubMed Central

[28] S. Mudda, K. M. Gayathri, and M. Mallikarjun, “Efficient frequency reconfigurable antenna for 4G, sub-6 GHz, 5G portable devices applications,” Wireless Pers. Commun., vol. 129, no. 4, pp. 2711–2725, 2023, https://doi.org/10.1007/s11277-023-10254-1.Search in Google Scholar

[29] V. M. Lad, K. V. Kulhalli, J. Kumar, and G. Patil, “Frequency-tunable multiband reconfigurable microstrip patch antenna for wireless application,” Wireless Pers. Commun., vol. 130, no. 2, pp. 1231–1242, 2023, https://doi.org/10.1007/s11277-023-10328-0.Search in Google Scholar

[30] A. Abdalrazik, A. B. Abdel-Rahman, A. Allam, M. Abo-Zahhad, K. Yoshitomi, and R. K. Pokharel, “Frequency-reconfigurable dielectric resonator antenna using metasurface,” Int J. Microw. Wireless Technol., vol. 14, no. 7, pp. 832–838, 2022, https://doi.org/10.1017/S1759078721001215.Search in Google Scholar

[31] S. Yang, Y. Chen, C. Yu, Y. Gong, and F. Tong, “Design of a low-profile, frequency-reconfigurable, and high gain antenna using a varactor-loaded AMC ground,” IEEE Access, vol. 8, pp. 158635–158646, 2020, https://doi.org/10.1109/ACCESS.2020.3020853.Search in Google Scholar

[32] C. Du, L. R. Pei, J. Zhang, and C. X. Shi, “A gain enhanced dual-band low SAR AMC-based MIMO antenna for WBAN and WLAN applications,” Prog. Electromagn. Res. M, vol. 115, pp. 21–34, 2023, https://doi.org/10.2528/PIERM22100201.Search in Google Scholar

[33] H. Malekpoor, “Broadband printed tapered slot antenna fed by CPW fulfilled with planar artificial magnetic conductor for X-band operation,” Adv. Electromagn., vol. 12, no. 1, pp. 1–10, 2023, https://doi.org/10.7716/aem.v12i1.2087.Search in Google Scholar

[34] Ali, U., Ullah, S., Basir, A., Kamal, B., Matekovits, L., and Yoo, H., “Design and SAR analysis of AMC-based fabric antenna for body-centric communication,” IEEE Access, vol. 11, no. 1, pp. 73894–73911, 2023. https://doi.org/10.1109/ACCESS.2023.3295993.Search in Google Scholar

[35] R. Gonçalves Licursi de Mello, A. C. Lepage, and X. Begaud, “A low-profile, triple-band, and wideband antenna using dual-band AMC,” Sensors, vol. 23, no. 4, p. 1920, 2023, https://doi.org/10.3390/s23041920.Search in Google Scholar PubMed PubMed Central

[36] Anil Babu, B., Madhav, B. T. P., Srilatha, K., Rao, M. C., and Das, S., “A multiband frequency reconfigurable and bifunctional metasurface,” Int. J. Electron. Lett., vol. 11, no. 4, pp. 507–520, 2022. https://doi.org/10.1080/21681724.2022.2118841.Search in Google Scholar

[37] L. Li, Z. Wu, K. Li, “Frequency-reconfigurable quasi-sierpinski antenna integrating with dual-band high-impedance surface,” IEEE Trans Antennas Propag, vol. 62, no. 9, pp. 4459–4467, 2014, https://doi.org/10.1109/TAP.2014.2331992.Search in Google Scholar

[38] Datasheet, “SMP1340 series: fast switching-speed, low-capacitance, plastic-packaged PIN diodes,” 2024 [Online]. Available: www.skyworksinc.com.Search in Google Scholar

[39] Balanis, C. A., Antenna Theory: Analysis and Design, 4th ed. New York, United States, Wiley, 2015.Search in Google Scholar

[40] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theor. Tech., vol. 47, no. 11, pp. 2059–2074, 1999, https://doi.org/10.1109/22.798001.Search in Google Scholar

[41] J. Lai, J. Wang, W. Sun, R. Zhao, and H. Zeng, “A low profile artificial magnetic conductor based tri-band antenna for wearable applications,” Microw. Opt. Technol. Lett., vol. 64, no. 1, pp. 123–129, 2022, https://doi.org/10.1002/mop.33040.Search in Google Scholar

[42] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E, vol. 71, no. 3, p. 036617, 2005, https://doi.org/10.1103/PhysRevE.71.036617.Search in Google Scholar PubMed

[43] Z. Wang, T. Liang, and Y. Dong, “Composite right-/left-handed-based, compact, low-profile, and multifunctional antennas for 5G applications,” IEEE Trans. Antenn. Propag., vol. 69, no. 10, pp. 6302–6311, 2021, https://doi.org/10.1109/TAP.2021.3076215.Search in Google Scholar

[44] D. F. Sievenpiper, “Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface,” IEEE Trans. Antenn. Propag., vol. 53, no. 1, pp. 236–247, 2005, https://doi.org/10.1109/TAP.2004.840516.Search in Google Scholar

[45] A. Foroozesh and L. Shafai, “Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag., vol. 59, no. 1, pp. 4–20, 2011, https://doi.org/10.1109/TAP.2010.2090458.Search in Google Scholar

[46] Institute of Electrical and Electronics Engineers (IEEE), “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,” in IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 2006, pp. 1–238.Search in Google Scholar

[47] W. Xia, K. Saito, M. Takahashi, and K. Ito, “Performances of an implanted cavity slot antenna embedded in the human arm,” IEEE Trans. Antenn. Propag., vol. 57, no. 4, pp. 894–899, 2009, https://doi.org/10.1109/TAP.2009.2014579.Search in Google Scholar

[48] Y. Fan, J. Huang, T. Chang, and X. Liu, “A miniaturized four-element MIMO antenna with EBG for implantable medical devices,” IEEE J. Electromagn. RF Microw. Med. Biol., vol. 2, no. 4, pp. 226–233, 2018, https://doi.org/10.1109/JERM.2018.2871458.Search in Google Scholar

[49] J. Kulkarni, B. Garner, and Y. Li, “AMC-backed wearable monopole antenna for sub-6 GHz 5G and WLAN applications,” in 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), IEEE, 2023, pp. 1265–1266.10.1109/USNC-URSI52151.2023.10237523Search in Google Scholar

Received: 2024-06-15
Accepted: 2024-12-09
Published Online: 2025-01-10
Published in Print: 2025-04-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2024-0193/html
Scroll to top button