Home Design and performance analysis of a compact, wideband dual polarized antenna for WLAN & WiMAX applications
Article
Licensed
Unlicensed Requires Authentication

Design and performance analysis of a compact, wideband dual polarized antenna for WLAN & WiMAX applications

  • Santimoy Mandal EMAIL logo , Arnab De and Chandan Kumar Ghosh
Published/Copyright: April 18, 2022
Become an author with De Gruyter Brill

Abstract

Dual polarization is achieved by putting a rectangular or circular patch in between two orthogonal gaps. At the beginning a single-polarized patch is considered. Then by using anequivalent circuit, the impedance matching property of the gap is being configured. After optimization of the length of the patch and width of the gap, a dual polarized antenna is being considered. Here in this article we projected a new technique to design dual polarized microstrip antenna for WLAN, WiMAX, wireless applications using circular patch. By combining all resonant modes we have finally achieved a wide operating bandwidth. Experimental result of the projected antenna shows the operating bandwidth of 21.56% (5.24–6.37 GHz) for (differential mode S-parameter) Sdd11 ≤ −10 dB with a high port isolation of 40 dB and a relative gain of 13.5 dBi is achieved. From the result analysis this antenna finds its applications for various WLAN and Wi-MAX frequency band.


Corresponding author: Santimoy Mandal, Department of ECE, R.V.S College of Engineering & Technology, Jharkhand, India, E-mail:

Acknowledgments

The authors like to acknowledge NIT Durgapur and IIEST, Shibpur, India for providing necessary support during this research work. This work is original and not submitted for publication elsewhere.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. L. Wong, Compact and Broadband Microstrip Antennas, Hoboken, NJ, USA, Wiley, 2002.10.1002/0471221112Search in Google Scholar

[2] S. Q. Zuo, Q. Liu, and Z. Y. Zhang, “Wideband dual-polarized crossed-dipole antenna with parasitical crossed-strip for base station applications,” Prog. Electromagn. Res. C, vol. 48, pp. 159–166, 2014, https://doi.org/10.2528/pierc14021101.Search in Google Scholar

[3] C. Liu, Y.-L. Liu, Y.-H. Huang, and L.-Y. Zhou, “A novel dual-polarized antenna with high isolation and low cross polarization for wireless communication,” Prog. Electromagn. Res. Lett., vol. 32, pp. 129–136, 2012, https://doi.org/10.2528/pierl12032805.Search in Google Scholar

[4] D. T. Notis, P. C. Liakou, and D. P. Chrissoulidis, “Dual polarized microstrip patch antenna, reduced in size by use of peripheral slits,” 34th European Microwave Conference, vol. 1, pp. 125–128, 2004.Search in Google Scholar

[5] P. Binu, S. Mridula, C.-K. Aanandan, K. Vasudevan, and P. Mohanan, “Electromagnetically coupled dual port dual band octagonal patch antenna,” Proc. IEEE Int. Conf. Personal Wireless Comm., pp. 305–307, 2005, https://doi.org/10.1109/ICPWC.2005.1431354.Search in Google Scholar

[6] Y. Li, Z. Zhang, J. Zheng, and Z. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antenn. Propag., vol. 60, no. 9, pp. 4037–4045, 2012, https://doi.org/10.1109/tap.2012.2207072.Search in Google Scholar

[7] Y. Li, Z. Zhang, Z. Feng, and M. F. Iskander, “Design of omnidirectional dual-polarized antenna in slender and low-profile column,” IEEE Trans. Antenn. Propag., vol. 62, no. 4, pp. 2323–2326, 2014, https://doi.org/10.1109/tap.2014.2303817.Search in Google Scholar

[8] C. Deng, P. Li, and W. Cao, “A high-isolation dual-polarization patch antenna with omnidirectional radiation patterns,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1273–1276, 2012, https://doi.org/10.1109/lawp.2012.2226555.Search in Google Scholar

[9] B. Q. Wu and K. Luk, “A broadband dual-polarized magneto-electric dipole antenna with simple feeds,” IEEE Antenn. Wireless Propag. Lett., vol. 8, pp. 60–63, 2009, https://doi.org/10.1109/lawp.2008.2011656.Search in Google Scholar

[10] C. Zhou, H. Wong, and L. K. Yeung, “A wideband dual-polarized inductor-end slot antenna with stable beamwidth,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 4, pp. 608–612, 2018, https://doi.org/10.1109/lawp.2018.2805827.Search in Google Scholar

[11] Y. Cui, R. Li, and H. Fu, “A broadband dual-polarized planar antenna for 2G/3G/LTE base stations,” IEEE Trans. Antenn. Propag., vol. 62, no. 9, pp. 4836–4840, 2014, https://doi.org/10.1109/tap.2014.2330596.Search in Google Scholar

[12] R. Kumari and R., “Gangwar, “Wideband circularly polarized square dielectric resonator antenna for WLAN/WiMAX applications”,” Int. J. RF Microw. Comput.-Aided Eng., vol. 29, 2019, https://doi.org/10.1002/mmce.21492.Search in Google Scholar

[13] A. De, B. Roy, and A. K. Bhattacharjee, “Design and investigations on a compact, UWB, monopole antenna with reconfigurable band notches for 5.2/5.8 GHz WLAN and 5.5 GHz Wi-MAX bands,” Int. J. Commun. Syst., vol. 33, no. 7, pp. 1–13, 2020. https://doi.org/10.1002/dac.4323.Search in Google Scholar

[14] A. Mehdipour, T. A. Denidni, and A. Sebak, “Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern,” IEEE Trans. Antenn. Propag., vol. 62, no. 2, pp. 555–562, 2014, https://doi.org/10.1109/tap.2013.2290791.Search in Google Scholar

[15] S. K. Sharma and R. K. Chaudhary, “A compact zeroth-order resonating wideband Antenna with dual-band characteristics,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 1670–1672, 2015, https://doi.org/10.1109/lawp.2015.2417889.Search in Google Scholar

[16] A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni, “Beam tilting antenna using integrated metamaterial loading,” IEEE Trans. Antenn. Propag., vol. 62, no. 5, pp. 2874–2879, 2014, https://doi.org/10.1109/tap.2014.2308516.Search in Google Scholar

[17] D. Li, Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate,” IEEE Trans. Antenn. Propag., vol. 60, no. 12, pp. 6018–6023, 2012, https://doi.org/10.1109/tap.2012.2213231.Search in Google Scholar

[18] N. Amani, M. Kamyab, A. Jafargholi, A. Hosseinbeig, and J. Meiguni, “Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures,” Electron. Lett., vol. 50, pp. 847–848, 2014, https://doi.org/10.1049/el.2014.0875.Search in Google Scholar

[19] H. Huang, Y. Liu, S. Zhang, and S. Gong, “Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 662–665, 2015, https://doi.org/10.1109/lawp.2014.2376969.Search in Google Scholar

[20] B. J. Kwaha, O. N Inyang, and P. Amalu, “The circular microstrip patch antenna – design and implementation,” Int. J. Res. Rev. Appl. Sci., vol. 8, no. 1, pp. 86–95, 2011.Search in Google Scholar

[21] J. Zhang, X. Q. Lin, L. Y. Nie, J. W. Yu, and Y. Fan, “Wideband dual-polarization patch antenna array with parallel strip line balun feeding,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 1499–1501, 2016, https://doi.org/10.1109/lawp.2016.2514538.Search in Google Scholar

[22] Y. Gao, R. Ma, Y. Wang, Q. Zhang, and C. Parini, “Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO,” IEEE Trans. Antenn. Propag., vol. 64, no. 10, pp. 4544–4549, 2016, https://doi.org/10.1109/tap.2016.2593869.Search in Google Scholar

[23] C. Deng, Y. Li, Z. Zhang, and Z. Feng, “A wideband high-isolated dual-polarized patch antenna using two different balun feedings,” IEEE Antenn. Wireless Propag. Lett., vol. 13, pp. 1617–1619, 2014. https://doi.org/10.1109/lawp.2014.2347338.Search in Google Scholar

[24] H. Zhai, K. Zhang, S. Yang, and D. Feng, “A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 2692–2695, 2017, https://doi.org/10.1109/lawp.2017.2741465.Search in Google Scholar

[25] L. Sabri, N. Amiri, and K. Forooraghi, “Dual-band and dual-polarized SIW-fed microstrip patch antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 13, pp. 1605–1608, 2014, https://doi.org/10.1109/lawp.2014.2339363.Search in Google Scholar

[26] J.-S. Row and Y.-J. Huang, “Dual-band dual-polarized antenna for WLAN applications,” Microw. Opt. Technol. Lett., vol. 60, pp. 260–265, 2017, https://doi.org/10.1002/mop.30948.Search in Google Scholar

[27] Q. Chu, D. Wen, and Y. Luo, “A broadband ±45° dual-polarized antenna with Y-shaped feeding lines,” IEEE Trans. Antenn. Propag., vol. 63, no. 2, pp. 483–490, 2015, https://doi.org/10.1109/tap.2014.2381238.Search in Google Scholar

[28] H. Huang, Y. Liu, and S. Gong, “A broadband dual-polarized base station antenna with sturdy construction,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 665–668, 2017, https://doi.org/10.1109/lawp.2016.2598181.Search in Google Scholar

[29] Y. Gou, S. Yang, J. Li, and Z. Nie, “A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications,” IEEE Trans. Antenn. Propag., vol. 62, no. 8, pp. 4392–4395, 2014, https://doi.org/10.1109/tap.2014.2327653.Search in Google Scholar

[30] Md Samsuzzaman, K. A. Fakeeh, Md S. Talukder, et al.., “A double hollow rectangular-shaped patch and with the slotted ground plane monopole wideband antenna for microwave head imaging applications,” Int. J. Commun. Syst., vol. 34, no. 16, 2021, https://doi.org/10.1002/dac.4958.Search in Google Scholar

Received: 2021-12-07
Accepted: 2022-03-24
Published Online: 2022-04-18
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0298/html
Scroll to top button