Home Studying Photonics Crystal Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer
Article
Licensed
Unlicensed Requires Authentication

Studying Photonics Crystal Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer

  • Abolfazl Abolhaasani-Kaleibar and Alireza Andalib EMAIL logo
Published/Copyright: March 13, 2018
Become an author with De Gruyter Brill

Abstract

In this paper we are going to design and simulating a 1 to 8 demultiplexer based on Photonic Crystal (PhC) that where in wavelengths was guided to her coupled cavity and after that our Intended output. This structure is good Selection to communication operations that their wavelengths are around 1550nm. High Q factor, high transmission speed and low crosstalk between wavelengths are the advantages of this structure. The area of this structure is 560μm2. The wavelengths was selected to this work are 1602.1 nm, 1598.3 nm, 1595.2 nm, 1591.8 nm, 1588.6 nm, 1585.4 nm, 1582.4 nm, 1579.6 nm. In this paper we are going to prepare the crosstalk between outputs and our main goal is giving low crosstalk between outputs.

References

[1] Y.-P. Yang, K.-C. Lin, I.-C. Yang, K.-Y. Lee, Y.-J. Lin, W.-Y. Lee, and Y.-T. Tsai, “All-optical photonic crystal AND gate with multiple operating wavelengths,” Opt. Commun., vol. 297, pp. 165–168, 2013.10.1016/j.optcom.2013.01.035Search in Google Scholar

[2] Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express., vol. 15, pp. 9287, 2007.10.1364/OE.15.009287Search in Google Scholar PubMed

[3] B. Saghirzadeh Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun., vol. 283, pp. 4099–4103, 2010.10.1016/j.optcom.2010.06.013Search in Google Scholar

[4] S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express., vol. 8, pp. 173, 2001.10.1364/OE.8.000173Search in Google Scholar PubMed

[5] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 1995.Search in Google Scholar

[6] F. Mehdizadeh and H. Alipour-Banaei, “Bandgap management in two-dimensional photonic crystal thue-morse structures,” J. Opt. Commun., vol. 34, pp. 61–65, 2013.10.1515/joc-2013-0007Search in Google Scholar

[7] H. Alipour-Banaei and F. Mehdizadeh, “Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis,” J. Opt. Commun, vol. 34, pp. 1–9, 2013.10.1515/joc-2013-0033Search in Google Scholar

[8] Z. Wu, K. Xie, and H. Yang, “Band gap properties of two-dimensional photonic crystals with rhombic lattice,” Opt. - Int. J. Light Electron Opt., vol. 123, pp. 534–536, 2012.10.1016/j.ijleo.2011.05.020Search in Google Scholar

[9] D. Liu, Y. Gao, A. Tong, and S. Hu, “Absolute photonic band gap in 2D honeycomb annular photonic crystals,” Phys. Lett. A, vol. 379, pp. 214–217, 2015.10.1016/j.physleta.2014.11.030Search in Google Scholar

[10] H. Alipour-Banaei and F. Mehdizadeh, “Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 2639–2644, 2013.10.1016/j.ijleo.2012.07.029Search in Google Scholar

[11] A. Tavousi and M. A. Mansouri-Birjandi, “Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers,” Photonic Netw. Commun., vol. 32, pp. 160–170, 2016.10.1007/s11107-015-0592-1Search in Google Scholar

[12] S. Marziye Mousavizadeh, M. Soroosh, and F. Mehdizadeh, “Photonic crystal-based demultiplexers using defective resonant cavity,” Optoelectron. Adv. Mater. Rapid Commun., vol. 9, pp. 28–31, 2015.Search in Google Scholar

[13] H. Guo, Q. Liao, T. Yu, S. Chen, and Y. Huang, “Design of high efficiency and large separating angle beam splitter based on photonic crystal cavity resonator,” Mod. Phys. Lett. B, vol. 25, pp. 1963–1969, 2011.10.1142/S0217984911027212Search in Google Scholar

[14] V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett., vol. 32, pp. 530, 2007.10.1364/OL.32.000530Search in Google Scholar

[15] Z. Huang, X. Yang, Y. Wang, X. Meng, R. Fan, and L. Wang, “Ultrahigh extinction ratio of polarization beam splitter based on hybrid photonic crystal waveguide structures,” Opt. Commun., vol. 354, pp. 9–13, 2015.10.1016/j.optcom.2015.05.040Search in Google Scholar

[16] X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett., vol. 83, pp. 3251, 2003.10.1063/1.1621736Search in Google Scholar

[17] G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, “2D photonic crystal cavity-based WDM multiplexer,” Photonics Nanostructures Fundam. Appl., vol. 5, pp. 164–170, 2007.10.1016/j.photonics.2007.03.003Search in Google Scholar

[18] L. Jiu-Sheng, L. Han, and Z. Le, “Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal,” Opt. Commun, vol. 350, pp. 248–251, 2015.10.1016/j.optcom.2015.04.034Search in Google Scholar

[19] H. Alipour-Banaei, F. Mehdizadeh, and S. Serajmohammadi, “A novel 4-channel demultiplexer based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt, vol. 124, pp. 5964–5967, 2013.10.1016/j.ijleo.2013.04.117Search in Google Scholar

[20] A. Rostami, F. Nazari, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostructures - Fundam. Appl., vol. 8, pp. 14–22, 2010.10.1016/j.photonics.2009.12.002Search in Google Scholar

[21] K. Venkatachalam, D. S. Kumar, and S. Robinson, “Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer,” Opt. - Int. J. Light Electron Opt, vol. 127, pp. 8819–8826, 2016.10.1016/j.ijleo.2016.06.112Search in Google Scholar

[22] D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express., vol. 16, pp. 17209, 2008.10.1364/OE.16.017209Search in Google Scholar

[23] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh, “Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators,” Opt. Appl., vol. 46, pp. 553–564, 2016.Search in Google Scholar

[24] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “An optical demultiplexer based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 127, pp. 8706–8709, 2016.10.1016/j.ijleo.2016.06.086Search in Google Scholar

[25] K. Venkatachalam, D. S. Kumar, and S. Robinson, “Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer,” Photonic Netw. Commun, vol. 34, pp. 100–110, 2017.10.1007/s11107-016-0675-7Search in Google Scholar

[26] M. A. Mansouri-Birjandi and M. R. Rakhshani, “A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 5923–5926, 2013.10.1016/j.ijleo.2013.04.128Search in Google Scholar

[27] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications,” Opt. Quantum Electron., vol. 45, pp. 1063–1075, 2013.10.1007/s11082-013-9717-xSearch in Google Scholar

[28] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, “Effect of scattering rods in the frequency response of photonic crystal demultiplexers,” J. Optoelectron. Adv. Mater., vol. 17, pp. 259–263, 2015.Search in Google Scholar

[29] A. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express., vol. 10, pp. 1048, 2002.10.1364/OE.10.001048Search in Google Scholar PubMed

[30] H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsyst. Technol., vol. 10, pp. 400–406, 2004.10.1007/s00542-004-0416-1Search in Google Scholar

[31] Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express., vol. 14, pp. 1783–1788, 2006.10.1364/OE.14.001783Search in Google Scholar

[32] M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett., vol. 28, pp. 2506, 2003.10.1364/OL.28.002506Search in Google Scholar

[33] R. Selim, D. Pinto, and S. S. A. Obayya, “Novel fast photonic crystal multiplexer-demultiplexer switches,” Opt. Quantum Electron., vol. 42, pp. 425–433, 2011.10.1007/s11082-011-9438-ySearch in Google Scholar

[34] M. A. Mansouri-Birjandi, A. Tavousi, and M. Ghadrdan, “Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators,” Photonics Nanostructures - Fundam. Appl., vol. 21, pp. 44–51, 2016.10.1016/j.photonics.2016.06.002Search in Google Scholar

[35] A. Tavousi, M. A. Mansouri-Birjandi, M. Ghadrdan, and M. Ranjbar-Torkamani, “Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–Drop filtering,” Photonic Netw. Commun., vol. 34, pp. 131–139, 2017.10.1007/s11107-016-0680-xSearch in Google Scholar

[36] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “Special optical communication filter based on Thue Morse photonic crystal structure,” Opt. Appl., vol. 46, pp. 145–152, 2016.Search in Google Scholar

[37] H. Alipour-Banaei, M. Hassangholizadeh-Kashtiban, and F. Mehdizadeh, “WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure,” Opt. - Int. J. Light Electron Opt, vol. 124, pp. 4416–4420, 2013.10.1016/j.ijleo.2013.03.027Search in Google Scholar

[38] F. Mehdizadeh, H. Alipour-Banaei, and S.,. Serajmohammadi, “Channel-drop filter based on a photonic crystal ring resonator,” J. Opt., vol. 15, pp. 075401, 2013.10.1088/2040-8978/15/7/075401Search in Google Scholar

[39] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A new proposal for PCRR-based channel drop filter using elliptical rings,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 56, pp. 211–215, 2014.10.1016/j.physe.2013.07.018Search in Google Scholar

[40] H. Alipour-Banaei, M. Jahanara, and F. Mehdizadeh, “T-shaped channel drop filter based on photonic crystal ring resonator,” Opt. - Int. J. Light Electron Opt., vol. 125, pp. 5348–5351, 2014.10.1016/j.ijleo.2014.06.056Search in Google Scholar

[41] M. Youcef Mahmoud, G. Bassou, and A. Taalbi, “A new optical add–Drop filter based on two-dimensional photonic crystal ring resonator,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 2864–2867, 2013.10.1016/j.ijleo.2012.08.072Search in Google Scholar

[42] A. Taalbi, G. Bassou, and M. Youcef Mahmoud, “New design of channel drop filters based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 824–827, 2013.10.1016/j.ijleo.2012.01.045Search in Google Scholar

[43] M. Youcef Mahmoud, G. Bassou, A. Taalbi, and Z. M. Chekroun, “Optical channel drop filters based on photonic crystal ring resonators,” Opt. Commun., vol. 285, pp. 368–372, 2012.10.1016/j.optcom.2011.09.068Search in Google Scholar

[44] Z. Rashki and S. J. Seyyed Mahdavi Chabok, “Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators,” Opt. Commun, 2016.10.1016/j.optcom.2016.08.077Search in Google Scholar

[45] Y. Wang, D. Chen, G. Zhang, J. Wang, and S. Tao, “A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors,” Opt. Commun, vol. 363, pp. 13–20, 2016.10.1016/j.optcom.2015.10.070Search in Google Scholar

[46] S. Sahel, R. Amri, L. Bouaziz, D. Gamra, M. Lejeune, M. Benlahsen, K. Zellama, and H. Bouchriha, “Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2,” Superlattices Microstruct, vol. 97, pp. 429–438, 2016.10.1016/j.spmi.2016.07.007Search in Google Scholar

[47] A. Dideban, H. Habibiyan, and H. Ghafoorifard, “Photonic crystal channel drop filters based on fractal structures,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 63, pp. 304–310, 2014.10.1016/j.physe.2014.06.009Search in Google Scholar

[48] M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, “A novel all optical reversible 4×2 encoder based on photonic crystals,” Opt. - Int. J. Light Electron Opt, vol. 126, pp. 2368–2372, 2015.10.1016/j.ijleo.2015.05.140Search in Google Scholar

[49] S. Gholamnejad and M. Zavvari, “Design and analysis of all-optical 4–2 binary encoder based on photonic crystal,” Opt. Quantum Electron., vol. 49, pp. 302, 2017.10.1007/s11082-017-1144-ySearch in Google Scholar

[50] T. A. Moniem, “All-optical digital 4×2 encoder based on 2D photonic crystal ring resonators,” J. Mod. Opt, vol. 63, pp. 735–741, 2016.10.1080/09500340.2015.1094580Search in Google Scholar

[51] H. Alipour-Banaei, M. G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, “Application of self-collimated beams to realization of all optical photonic crystal encoder,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 75, pp. 77–85, 2016.10.1016/j.physe.2015.08.011Search in Google Scholar

[52] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “Proposal for 4-to-2 optical encoder based on photonic crystals,” IET Optoelectron, vol. 11, pp. 29–35(6), 2017.10.1049/iet-opt.2016.0022Search in Google Scholar

[53] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure,” Appl. Opt., vol. 56, pp. 1799–1806, 2017.10.1364/AO.56.001799Search in Google Scholar PubMed

[54] B. Youssefi, M. K. Moravvej-Farshi, and N. Granpayeh, “Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals,” Opt. Commun, vol. 285, pp. 3228–3233, 2012.10.1016/j.optcom.2012.02.081Search in Google Scholar

[55] B. Miao, C. Chen, A. Sharkway, S. Shi, and D. W. Prather, “Two bit optical analog-to-digital converter based on photonic crystals,” Opt. Express., vol. 14, pp. 7966, 2006.10.1364/OE.14.007966Search in Google Scholar PubMed

[56] K. Fasihi, “All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals,” Opt. - Int. J. Light Electron Opt, vol. 125, pp. 6520–6523, 2014.10.1016/j.ijleo.2014.08.030Search in Google Scholar

[57] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “All optical 2-bit analog to digital converter using photonic crystal based cavities,” Opt. Quantum Electron., vol. 49, pp. 38, 2017.10.1007/s11082-016-0880-8Search in Google Scholar

[58] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures,” IEEE Photonics J, vol. 9, pp. 1–11, 2017.10.1109/JPHOT.2017.2690362Search in Google Scholar

[59] A. Tavousi, M.A. Mansouri-Birjandi, and M. Saffari, “Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 83, pp. 101–106, 2016.10.1016/j.physe.2016.04.007Search in Google Scholar

[60] T. A. Moniem, “All optical active high decoder using integrated 2D square lattice photonic crystals,” J. Mod. Opt., vol. 62, pp. 2015, 1643–1649.10.1080/09500340.2015.1061061Search in Google Scholar

[61] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, “All optical decoder switch based on photonic crystal ring resonators,” Opt. Quantum Electron., vol. 47, pp. 1109–1115, 2014.10.1007/s11082-014-9967-2Search in Google Scholar

[62] Z. Chen, Z. Li, and B. Li, “A 2-to-4 decoder switch in SiGe/Si multimode inteference,” Opt. Express, vol. 14, pp. 2671, 2006.10.1364/OE.14.002671Search in Google Scholar PubMed

[63] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “A novel proposal for optical decoder switch based on photonic crystal ring resonators,” Opt. Quantum Electron., vol. 48, pp. 20, 2015.10.1007/s11082-015-0313-0Search in Google Scholar

[64] H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, and M. Hassangholizadeh-Kashtiban, “A 2*4 all optical decoder switch based on photonic crystal ring resonators,” J. Mod. Opt, vol. 62, pp. 430–434, 2014.10.1080/09500340.2014.957743Search in Google Scholar

[65] H. Alipour-Banaei, M. G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, “Effect of self-collimated beams on the operation of photonic crystal decoders,” J. Electromagn. Waves Appl., vol. 30, pp. 1440–1448, 2016.10.1080/09205071.2016.1202785Search in Google Scholar

[66] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, “Study the role of non-linear resonant cavities in photonic crystal-based decoder switches,” J. Mod. Opt., vol. 64, pp. 1233–1239, 2017.10.1080/09500340.2016.1275854Search in Google Scholar

[67] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, “Optical wavelength demultiplexer based on photonic crystal ring resonators,” Photonic Netw. Commun., vol. 29, pp. 146–150, 2014.10.1007/s11107-014-0483-xSearch in Google Scholar

[68] F. Mehdizadeh and M. Soroosh, “A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities,” Photonic Netw. Commun., vol. 31, pp. 65–70, 2016.10.1007/s11107-015-0531-1Search in Google Scholar

[69] R. Talebzadeh, M. Soroosh, Y. S. Kavian, and F. Mehdizadeh, “All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods,” Photonic Netw. Commun, vol. 34, pp. 248–257, 2017.10.1007/s11107-017-0688-xSearch in Google Scholar

Received: 2017-08-13
Published Online: 2018-03-13
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2017-0189/html
Scroll to top button