Home Fefferman type criterion on weighted bi-parameter local Hardy spaces and boundedness of bi-parameter pseudodifferential operators
Article
Licensed
Unlicensed Requires Authentication

Fefferman type criterion on weighted bi-parameter local Hardy spaces and boundedness of bi-parameter pseudodifferential operators

  • Wei Ding and Guozhen Lu EMAIL logo
Published/Copyright: October 26, 2022

Abstract

To study the boundedness of bi-parameter singular integral operators of non-convolution type in the Journé class, Fefferman discovered a boundedness criterion on bi-parameter Hardy spaces H p ( n 1 × n 2 ) by considering the action of the operators on rectangle atoms. More recently, the theory of multiparameter local Hardy spaces has been developed by the authors. In this paper, we establish this type of boundedness criterion on weighted bi-parameter local Hardy spaces h ω p ( n 1 × n 2 ) . In comparison with the unweighted case, the uniform boundedness of rectangle atoms on weighted local bi-parameter Hardy spaces, which is crucial to establish the atomic decomposition on bi-parameter weighted local Hardy spaces, is considerably more involved. As an application, we establish the boundedness of bi-parameter pseudodifferential operators, including h ω p ( n 1 × n 2 ) to L ω p ( n 1 + n 2 ) and h ω p ( n 1 × n 2 ) to h ω p ( n 1 × n 2 ) for all 0 < p 1 , which sharpens our earlier result even in the unweighted case requiring

max { n 1 n 1 + 1 , n 2 n 2 + 1 } < p 1 .


Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11771223

Funding source: Simons Foundation

Award Identifier / Grant number: 519099

Funding statement: The first author is partly supported by NNSF of China (grant no. 11771223). The second author is partly supported by a collaboration grant from the Simons foundation.

Acknowledgements

The authors would like to thank the referee for the very careful reading of the manuscript and many helpful comments which have helped to improve the exposition of our paper.

References

[1] O. N. Capri and C. E. Gutiérrez, Weighted inequalities for a vector-valued strong maximal function, Rocky Mountain J. Math. 18 (1988), no. 3, 565–570. 10.1216/RMJ-1988-18-3-565Search in Google Scholar

[2] S.-Y. A. Chang and R. Fefferman, The Calderón–Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468. 10.2307/2374150Search in Google Scholar

[3] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H p -theory on product domains, Bull. Amer. Math. Soc. (N. S.) 12 (1985), no. 1, 1–43. 10.1090/S0273-0979-1985-15291-7Search in Google Scholar

[4] J. Chen, W. Ding and G. Lu, Boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces, Forum Math. 32 (2020), no. 4, 919–936. 10.1515/forum-2019-0319Search in Google Scholar

[5] J. Chen, L. Huang and G. Lu, Hörmander Fourier multiplier theorems with optimal Besov regularity on multi-parameter Hardy spaces, Forum Math. 33 (2021), no. 6, 1605–1627. 10.1515/forum-2021-0201Search in Google Scholar

[6] J. Chen, L. Huang and G. Lu, Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces, Math. Res. Lett. 28 (2021), no. 4, 1047–1084. 10.4310/MRL.2021.v28.n4.a4Search in Google Scholar

[7] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101. 10.4064/sm-57-1-97-101Search in Google Scholar

[8] W. Dai and G. Lu, L p estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France 143 (2015), no. 3, 567–597. 10.24033/bsmf.2698Search in Google Scholar

[9] W. Ding and G. Lu, Duality of multi-parameter Triebel–Lizorkin spaces associated with the composition of two singular integral operators, Trans. Amer. Math. Soc. 368 (2016), no. 10, 7119–7152. 10.1090/tran/6576Search in Google Scholar

[10] W. Ding and G. Lu, Boundedness of inhomogeneous Journé’s type operators on multi-parameter local Hardy spaces, Nonlinear Anal. 197 (2020), Article ID 111816. 10.1016/j.na.2020.111816Search in Google Scholar

[11] W. Ding, G. Lu and Y. Zhu, Discrete Littlewood–Paley–Stein characterization of multi-parameter local Hardy spaces, Forum Math. 31 (2019), no. 6, 1467–1488. 10.1515/forum-2019-0038Search in Google Scholar

[12] W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 (2019), 352–380. 10.1016/j.na.2019.02.014Search in Google Scholar

[13] W. Ding and Y. Zhu, Mixed Hardy spaces and their applications, Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 4, 945–969. 10.1007/s10473-020-0405-1Search in Google Scholar

[14] Y. Ding, Y. Han, G. Lu and X. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces H w p ( n × m ) , Potential Anal. 37 (2012), no. 1, 31–56. 10.1007/s11118-011-9244-ySearch in Google Scholar

[15] Y. Ding, G. Z. Lu and B. L. Ma, Multi-parameter Triebel–Lizorkin and Besov spaces associated with flag singular integrals, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 4, 603–620. 10.1007/s10114-010-8352-8Search in Google Scholar

[16] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. 10.2307/2373450Search in Google Scholar

[17] R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), no. 1, 33–40. 10.2307/2374188Search in Google Scholar

[18] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. 10.2307/1971346Search in Google Scholar

[19] R. Fefferman, A p weights and singular integrals, Amer. J. Math. 110 (1988), no. 5, 975–987. 10.2307/2374700Search in Google Scholar

[20] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. 10.1016/S0001-8708(82)80001-7Search in Google Scholar

[21] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 10.1016/0022-1236(90)90137-ASearch in Google Scholar

[22] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. Search in Google Scholar

[23] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. 10.1215/S0012-7094-79-04603-9Search in Google Scholar

[24] R. F. Gundy and E. M. Stein, H p theory for the poly-disc, Proc. Natl. Acad. Sci. USA 76 (1979), no. 3, 1026–1029. 10.1073/pnas.76.3.1026Search in Google Scholar PubMed PubMed Central

[25] X. Han, G. Lu and Y. Xiao, Dual spaces of weighted multi-parameter Hardy spaces associated with the Zygmund dilation, Adv. Nonlinear Stud. 12 (2012), no. 3, 533–553. 10.1515/ans-2012-0306Search in Google Scholar

[26] Y. Han and G. Lu, Discrete Littlewood–Paley–Stein theory and multi-parameter Hardy spaces associated with flag singular integrals, preprint (2008), https://arxiv.org/abs/0801.1701. Search in Google Scholar

[27] Y. Han, G. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE 7 (2014), no. 7, 1465–1534. 10.2140/apde.2014.7.1465Search in Google Scholar

[28] Q. Hong and G. Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud. 14 (2014), no. 4, 1055–1082. 10.1515/ans-2014-0413Search in Google Scholar

[29] Q. Hong, G. Lu and L. Zhang, L p boundedness of rough bi-parameter Fourier integral operators, Forum Math. 30 (2018), no. 1, 87–107. 10.1515/forum-2016-0221Search in Google Scholar

[30] L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss. 116, Academic Press, New York, 1963. 10.1007/978-3-642-46175-0Search in Google Scholar

[31] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Singular Integrals, American Mathematical Society, Providence (1967), 138–183. 10.1090/pspum/010/0383152Search in Google Scholar

[32] J. Hounie and R. A. D. S. Kapp, Pseudodifferential operators on local Hardy spaces, J. Fourier Anal. Appl. 15 (2009), no. 2, 153–178. 10.1007/s00041-008-9021-5Search in Google Scholar

[33] J.-L. Journé, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91. 10.4171/RMI/15Search in Google Scholar

[34] J.-L. Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96 (1986), no. 4, 593–598. 10.1090/S0002-9939-1986-0826486-9Search in Google Scholar

[35] J.-L. Journé, Two problems of Calderón–Zygmund theory on product-spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 111–132. 10.5802/aif.1125Search in Google Scholar

[36] G. Lu and Z. Ruan, Duality theory of weighted Hardy spaces with arbitrary number of parameters, Forum Math. 26 (2014), no. 5, 1429–1457. 10.1515/forum-2012-0018Search in Google Scholar

[37] G. Lu, J. Shen and L. Zhang, Multi-parameter Hardy space theory and endpoint estimates for multi-parameter singular integrals, to appear in Mem. Amer. Math. Soc. 10.1090/memo/1388Search in Google Scholar

[38] M.-P. Malliavin and P. Malliavin, Intégrales de Lusin–Calderon pour les fonctions biharmoniques, Bull. Sci. Math. (2) 101 (1977), no. 4, 357–384. Search in Google Scholar

[39] J. Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. 10.1215/S0012-7094-86-05337-8Search in Google Scholar

[40] Z. Ruan, Weighted Hardy spaces in the three-parameter case, J. Math. Anal. Appl. 367 (2010), no. 2, 625–639. 10.1016/j.jmaa.2010.02.010Search in Google Scholar

[41] C. D. Sogge, Fourier Integrals in Classical Analysis, 2nd ed., Cambridge Tracts in Math. 210, Cambridge University, Cambridge, 2017. 10.1017/9781316341186Search in Google Scholar

[42] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University, Princeton, 1993. 10.1515/9781400883929Search in Google Scholar

Received: 2022-07-04
Revised: 2022-09-13
Published Online: 2022-10-26
Published in Print: 2022-11-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0192/html
Scroll to top button