Home On sums of hyper-Kloosterman sums
Article
Licensed
Unlicensed Requires Authentication

On sums of hyper-Kloosterman sums

  • Jack Buttcane ORCID logo EMAIL logo
Published/Copyright: June 27, 2023

Abstract

A formula of Kuznetsov allows one to interpret a smooth sum of Kloosterman sums as a sum over the spectrum of GL ( 2 ) automorphic forms. In this paper, we construct a similar formula for the first hyper-Kloosterman sums using GL ( 3 ) automorphic forms, resolving a long-standing problem of Bump, Friedberg and Goldfeld. Along the way, we develop what are apparently new bounds for the order derivatives of the classical J-Bessel function, and we conclude with a discussion of the original method of Bump, Friedberg and Goldfeld.

MSC 2020: 11L05; 11F72; 11F55

Communicated by Valentin Blomer


A Bounds on Bessel functions

A.1 Simple global bounds on the direct functions

In this section, we prove Lemma 6.1.

For x > 0 and t , [19, 7.13.2 (17)] gives

J i t ( x ) = 1 2 π ( x 2 + t 2 ) - 1 4 e π 2 | t | exp ( i sgn ( t ) ω ( x , t ) ) ( j = 0 N a ~ j ( 1 + x 2 / t 2 ) ( x 2 + t 2 ) j / 2 + O ( x - N - 1 ) ) ,
ω ( x , t ) := | t | arcsinh | t | x - t 2 + x 2 - π 4 ,

where

a ~ 0 ( u ) = 1 , a ~ 1 ( u ) = - i 24 ( 3 - 5 u ) ,

satisfies a ~ j ( 1 + x 2 / t 2 ) j 1 . In particular,

(A.1) J i t ( x ) = 1 2 π ( x 2 + t 2 ) - 1 4 e π 2 | t | exp ( i sgn ( t ) ω ( x , t ) ) ( 1 + O ( x - 1 ) ) ,

and for | t | x 1 / 2 + ϵ we have

ω ( x , t ) = - x + t 2 2 x - π 4 + O ( x ϵ - 1 ) ,

so

(A.2) J i t ( x ) = 1 2 π x e π 2 | t | exp ( i sgn ( t ) ( - x + t 2 2 x - π 4 ) ) + O ( x ϵ - 3 2 e π 2 | t | ) .

The J-Bessel function at real order is related to the Hankel functions via J σ ( x ) = Re ( H σ ( 1 ) ( x ) ) , so for x > σ > 0 , [19, 7.13.2 (11)] gives

(A.3) J σ ( x ) = Re ( 2 π ( x 2 - σ 2 ) - 1 4 exp ( i ω ~ ( x , σ ) ) ( j = 0 N a ~ j ( 1 - x 2 / σ 2 ) ( x 2 - σ 2 ) j / 2 + O ( x - N - 1 ) ) ) ,

where

ω ~ ( x , σ ) := ( x 2 - σ 2 ) 1 2 + σ arcsin ( σ x ) - π 2 ( σ + 1 2 ) .

In particular, for 0 < d x 1 / 2 + ϵ ,

(A.4) J d - 1 ( x ) = 2 π x cos ( x + ( d - 1 ) 2 2 x - π 2 d + π 4 ) + O ( x ϵ - 3 2 ) .

For the first Hankel function, the asymptotics [19, 7.13.2 (13), (15), (22)] imply

(A.5) H σ ( 1 ) ( x ) min { σ - 1 / 3 , | x 2 - σ 2 | - 1 4 } , H i t ( 1 ) ( x ) ( x 2 + t 2 ) - 1 4 e π 2 | t | , x 1 .

From (A.5) and the power series [22, 8.402], we see that

F ( ν ) := ( x 2 - ν 2 - i ) 1 4 e i π 2 ν J ν ( x ) 1

holds on the boundary of the sector

{ ν | 0 arg ν π 2 }

uniformly on x > 0 . For a fixed x, the bound

F ( ν ) x exp ( | ν | ( 1 + | log ( x 2 ) | ) )

holds inside the sector (by the power series expansion), so by Phragmén–Lindelöf for a sector, we have (6.1). Also, using [22, 8.471.1], for - 1 < Re ( ν ) < 0 , we have

J ν ( x ) = 2 ν x J ν + 1 ( x ) - J ν + 2 ( x ) ,

and this implies (6.2).

We may express the Y-Bessel function in terms of the Hankel functions as i Y i t ( x ) = H i t ( 1 ) ( x ) - J i t ( x ) , so (A.5), the bounds on J i t ( x ) , and the above arguments give (6.3). Note that on 0 < x 1 , the Y-Bessel function displays an additional logarithmic dependence on x, so we simply avoid that here.

A.2 Bounds on the order derivative of the J-Bessel function

In this section, we prove Lemma 6.2. First, let us recall some well-known asymptotics for the Y-Bessel functions: From [30, 10.8.1, 10.8.2, 10.17.4], some simple, global bounds for Y 0 and Y 1 are

(A.6) Y 0 ( y ) min { 1 + | log y | , y - 1 2 } ,
(A.7) Y 1 ( y ) y - 1 + | log y | y - 1 2 ,

and more precisely, we have [30, 10.17.4]

(A.8) Y 0 ( y ) = 2 π y cos ( y - π 4 ) + O ( y - 3 2 ) .

As in the previous section, we prove the bound for ν 0 ; then for ν purely imaginary and Phragmén–Lindelöf implies the lemma. More precisely, we first show the bound for x < | t | 1 / 3 and then for | t | 2 to avoid some technical complications in the difficult case of ν purely imaginary.

When x < | t | 1 / 3 , we can simply use the power series expansion for (the ν-derivative of) J ν ( x ) ; one can easily derive the bound

O ( log ( 3 + x - 1 ) ( 1 + | t | ) - 1 2 log ( 3 + | t | ) )

in this case. When | t | 2 , we apply a formula of Dunster [18, (2.1), (2.8)]:

ν J ν ( x ) = π 2 Y ν ( x ) + π ν ( J ν ( x ) x J ν ( t ) Y ν ( t ) d t t - Y ν ( x ) x ( J ν ( t ) ) 2 d t t )

for x 0 , | arg ( x ) | < π , provided the unbounded parts of the contours lie on the positive real axis and the contours avoid ( - , 0 ] . This formula is effective in the case | Im ( ν ) | 1 , but the opposite case requires the recovery of exponential factors resulting from the products of three Bessel functions. Again, a simple application of the J- and Y-Bessel bounds gives the lemma in this case, with the integrals adding at most a logarithmic factor in case x is near zero.

Now we handle the case where ν is purely imaginary. In [1, (42)], we have

ν J ν ( x ) = π 2 ν 0 x Y 0 ( x - y ) J ν ( y ) d y y .

This integral representation does not apply at Re ( ν ) = 0 , but if we take 0 < η < x and N 0 , we can write this as

ν J ν ( x ) = π 2 ν η x Y 0 ( x - y ) J ν ( y ) d y y + π 2 ν 0 η Y 0 ( x - y ) ( J ν ( y ) - k = 0 N ( - 1 ) k ( y / 2 ) ν + 2 k k ! Γ ( k + 1 + ν ) ) d y y
+ π 2 ν k = 0 N ( - 1 ) k 2 - ν - 2 k k ! Γ ( k + 1 + ν ) 0 η Y 0 ( x - y ) y ν + 2 k - 1 𝑑 y .

Then integration by parts gives

ν J ν ( x ) = π 2 ν η x Y 0 ( x - y ) J ν ( y ) d y y + π 2 ν 0 η Y 0 ( x - y ) ( J ν ( y ) - k = 0 N ( - 1 ) k ( y / 2 ) ν + 2 k k ! Γ ( k + 1 + ν ) ) d y y
+ π 2 ν k = 0 N ( - 1 ) k ( η / 2 ) ν + 2 k k ! ( ν + 2 k ) Γ ( k + 1 + ν ) ( Y 0 ( x - η ) - 2 η 0 1 Y 1 ( x - η y ) y ν + 2 k 𝑑 y ) ,

and this has an analytic continuation to Re ( ν ) = 0 .

Now suppose x 4 t 1 / 3 , t 3 and ν = i t , and in place of the sharp cut-off we apply a smooth, dyadic partition of unity as y or x - y becomes small, stopping when y < t 1 / 3 or x - y < x / t (more precisely, we apply the partition, which depends on t, then analytically continue to ν = i t ), so that

2 π i t ν J ν ( x ) | ν = i t = T 0 + t 1 / 3 C x / 4 T 1 a ( C ) + x / t C x / 2 T 1 b ( C ) + T 2 a - T 2 b ,
T 0 := 0 x Y 0 ( y ) J i t ( x - y ) f 0 ( t y x ) d y x - y ,
T 1 a ( C ) := 0 x Y 0 ( x - y ) J i t ( y ) f 1 ( y C ) d y y ,
T 1 b ( C ) := 0 x Y 0 ( x - y ) J i t ( y ) f 1 ( x - y C ) d y y ,
T 2 a := 0 x Y 0 ( x - y ) ( J i t ( y ) - k = 0 N ( - 1 ) k ( y / 2 ) i t + 2 k k ! Γ ( k + 1 + i t ) ) f 0 ( y t 1 / 3 ) d y y ,
T 2 b := k = 0 N ( - 1 ) k ( t 1 / 3 / 2 ) i t + 2 k k ! ( i t + 2 k ) Γ ( k + 1 + i t ) 0 1 ( t 1 3 Y 1 ( x - t 1 3 y ) f 0 ( y ) + Y 0 ( x - t 1 3 y ) f 0 ( y ) ) y i t + 2 k 𝑑 y ,

where each f i is smooth, f i ( n ) ( y ) n 1 and, say, f 0 is supported on [ - 1 , 1 ] (in constructing the partition, f 0 will be nonzero at 0) while f 1 is supported on [ 1 2 , 3 2 ] ; the C sums are dyadic.

For the first term, we use (A.6) so that

T 0 ( x 2 + t 2 ) - 1 4 e π 2 t x - 1 0 x min { 1 + | log y | , y - 1 2 } f 0 ( t y x ) 𝑑 y ( x 2 + t 2 ) - 1 4 t - 1 e π 2 t log t .

For the fourth term, note that for 0 < z < 2 t 1 / 3 we have

| J i t ( z ) - k = 0 N ( - 1 ) k ( z / 2 ) i t + 2 k k ! Γ ( k + 1 + i t ) | k = N + 1 t 2 k / 3 k ! | Γ ( 1 + k + i t ) | t - 1 2 - N + 1 3 e π 2 t ,

so we take N = 2 , giving

(A.9) T 2 a x - 1 2 t - 3 2 e π 2 t log t .

For the fifth term, we apply (A.6) and (A.7) so that

T 2 b x - 1 2 e π 2 t k = 0 N t - 1 2 - k 3 ± ( t 1 / 3 | 0 1 e ± i t 1 / 3 y y i t + 2 k f 0 ( y ) 𝑑 y | + | 0 1 e ± i t 1 / 3 y y i t + 2 k f 0 ( y ) 𝑑 y | ) .

Repeated integration by parts implies

| 0 1 e ± i t 1 / 3 y y i t + 2 k f 0 ( y ) 𝑑 y | + | 0 1 e ± i t 1 / 3 y y i t + 2 k f 0 ( y ) 𝑑 y | t - 100 ,

and we have

(A.10) T 2 b x - 1 2 t - 3 2 e π 2 t .

For the second and third terms, we apply the asymptotic expansion of the J-Bessel function (A.1):

e - π 2 t T 1 a ( C ) j = 0 M a | 0 x Y 0 ( x - y ) ( y 2 + t 2 ) - 1 4 - j 2 e i ω ( y , t ) f 1 ( y C ) a ~ j ( 1 + ( y t ) 2 ) d y y | + t - 1 2 - M a + 1 3 x - 1 2 ,
e - π 2 t T 1 b ( C ) j = 0 M b | 0 x Y 0 ( x - y ) ( y 2 + t 2 ) - 1 4 - j 2 e i ω ( y , t ) f 1 ( x - y C ) a ~ j ( 1 + ( y t ) 2 ) d y y |
+ ( x 2 + t 2 ) - 1 4 x - M b - 2 ( C 1 2 + | log C | ) ,

using

C / 2 2 C | Y 0 ( y ) | 𝑑 y C 1 2 + | log C | , C / 2 2 C | Y 0 ( x - y ) | d y y k + 1 x - 1 2 C - k .

So we may take M a = M b = 2 , but actually the trivial bound on j 1 is sufficient for

e - π 2 t T 1 a ( C ) | 0 x Y 0 ( x - y ) ( y 2 + t 2 ) - 1 4 e i ω ( y , t ) f 1 ( y C ) d y y | + t - 1 ( x 2 + t 2 ) - 1 4 log ( x + t ) ,
e - π 2 t T 1 b ( C ) | 0 x Y 0 ( x - y ) ( y 2 + t 2 ) - 1 4 e i ω ( y , t ) f 1 ( x - y C ) d y y | + t - 1 ( x 2 + t 2 ) - 1 4 log ( x + t ) .

Assume for the moment that C t ϵ (this is only new for the T 1 b integral). Then applying the asymptotic expansion (A.8) of Y 0 ( y ) yields

e - π 2 t T 1 a ( C ) ± j = 0 2 | 0 x ( x - y ) - 1 2 - j ( y 2 + t 2 ) - 1 4 e i ω ( y , t ) ± i y f 1 ( y C ) d y y | + t - 1 ( x 2 + t 2 ) - 1 4 log ( x + t ) ,
e - π 2 t T 1 b ( C ) ± j = 0 1 / ϵ - 1 | 0 x ( x - y ) - 1 2 - j ( y 2 + t 2 ) - 1 4 e i ω ( y , t ) ± i y f 1 ( x - y C ) d y y | + t - 1 ( x 2 + t 2 ) - 1 4 log ( x + t ) .

We have

u ω ( u , t ) = - u 2 + t 2 u , j u j ω ( u , t ) t 2 1 + ( t / u ) j - 2 u 4 - j ( u 2 + t 2 ) j - 3 2 t 2 u 2 ( u + t ) j - 1 , j 2 .

So by Lemma 5.1 with T = 1 , U = C , Q = C + t , and Y = t 2 ( C + t ) C 2 , the integrals are O ( t - 1 ( x 2 + t 2 ) - 1 / 4 ) (we have an x - 1 / 2 in both cases, just need to recover the t 3 / 2 , hence just t ϵ ) unless

- 1 + ( t y ) 2 ± 1 t ϵ ( t C C + t + C - 1 )

for some y [ C / 2 , 3 C / 2 ] . This is impossible unless t C , in which case we must have

± = + and t 2 C t ϵ ( t C + 1 ) ,

so that x C t 2 - ϵ . The trivial bound in that case becomes

T 1 a ( C ) , T 1 b ( C ) ϵ t ϵ - 1 ( x 2 + t 2 ) - 1 4 e π 2 t .

For T 1 b , in case x / t C < t ϵ , we perform a single integration by parts on the integral

0 x Y 0 ( x - y ) f 1 ( x - y C ) ( y 2 + t 2 ) 3 / 4 ( - i y 2 + t 2 y e i ω ( y , t ) ) 𝑑 y
= 0 x ( 3 2 y Y 0 ( x - y ) f ( x - y C ) y 2 + t 2 + C - 1 Y 0 ( x - y ) f ( x - y C ) - Y 1 ( x - y ) f ( x - y C ) ) e i ω ( y , t ) d y ( y 2 + t 2 ) 3 / 4 .

Trivially bounding the result gives

T 1 b ( C ) ϵ t ϵ - 1 ( x 2 + t 2 ) - 1 4 e π 2 t

in this case as well.

B Mathematica code

We include some Mathematica code to help verify the computations in Section 8. Some examples the reader might find useful are given below.

Simplify[w5mat @@ w5Coords[Table[Subscript[g, i, j], {i, 1, 3}, {j, 1, 3}]]] // MatrixFormSimplify[TestF[ymat[y1, y2] . kmat[θ1, θ2, θ3]]]PrettyDerv[Emat[1, 1]]PrettyLieF[Emat[1, 1]]

The Mathematica code:

A1[g_] := g[[3, 1]]; A2[g_] := g[[2, 1]] g[[3, 2]] - g[[2, 2]] g[[3, 1]]B1[g_] := g[[3, 2]]; B2[g_] := g[[2, 3]] g[[3, 1]] - g[[2, 1]] g[[3, 3]]C1[g_] := g[[3, 3]]; C2[g_] := g[[2, 2]] g[[3, 3]] - g[[2, 3]] g[[3, 2]] xmat[x1_, x2_, x3_] := {{1, x2, x3}, {0, 1, x1}, {0, 0, 1}}ymat[y1_, y2_] := DiagonalMatrix[{y1 y2, y1, 1}]w3 = -{{1, 0, 0}, {0, 0, 1}, {0, 1, 0}};w5 = {{0, 0, 1}, {1, 0, 0}, {0, 1, 0}};R[θ_] := {{Cos[θ], -Sin[θ], 0}, {Sin[θ], Cos[θ], 0}, {0, 0, 1}}kmat[θ1_, θ2_, θ3_] := R[θ1] . w3 . R[θ2] . w3 . R[θ3]Emat[i_, j_] := Table[If[i == ival && j == jval, 1, 0], {ival, 1, 3}, {jval, 1, 3}] (* returns {s,t1,t2,z1,u1,u2,u3,v1,v3} *)w5Coords[g_] := {B1[g], A2[g]/B1[g]^2, (g[[3, 2]] Det[g])/A2[g]^2, A1[g]/B1[g], g[[2, 2]]/B1[g], (g[[1, 1]] g[[3, 2]] - g[[1, 2]] g[[3, 1]])/A2[g], g[[1, 2]]/B1[g], -(B2[g]/A2[g]), -(C2[g]/A2[g])}w5mat[s_, t1_, t2_, z1_, u1_, u2_, u3_, v1_, v3_] := s xmat[u1, u2, u3] . ymat[t1, t2] . Transpose[xmat[z1, 0, 0]] . w5 . xmat[v1, 0, v3]w5vars = {s, t1, t2, z1, u1, u2, u3, v1, v3};w5dervs = Map[Subscript[D, #] &, w5vars]; (* returns (d/da) f[t z^T w5 v exp(a E)] | _(a = 0) *)Lie[E_, f_] := Simplify[D[f @@ w5Coords[w5mat[s, t1, t2, z1, 0, 0, 0, v1, v3] . MatrixExp[a E]], a] /. a ->0] (* Displays the action of E_(ij) in a readable form. *)PrettyDerv[E_] := Lie[E, f] /. Derivative[a__][f][__] :>Times @@ (w5dervs^{a}) (* The test function of Section 7.4 *)TestF[s_, t1_, t2_, z1_, u1_, u2_, u3_, v1_, v3_] := e[u1 + u2 + v1] * f[C^3 t2 Sqrt[t1]] h1[t1] h2[X z1/Sqrt[t1]] h3[v1] h3[v3]TestF[g_] := TestF @@ w5Coords[g]; (* Displays E F^(d) in the notation of Section 8.2 *)PrettyLieF[E_] := Expand[Lie[E, TestF]/TestF @@ w5vars /. {u1 ->0, u2 ->0, u3 ->0, e An error in the conversion from LaTeX to XML has occurred here. [a_] ->2 π I F e[a], f An error in the conversion from LaTeX to XML has occurred here. [a_] ->F^e1 f[a], h1 An error in the conversion from LaTeX to XML has occurred here. [a_] ->F^e2 h1[a], h2 An error in the conversion from LaTeX to XML has occurred here. [a_] ->F^e3 h2[a], h3 An error in the conversion from LaTeX to XML has occurred here. [v1] ->F^e4 h3[v1], h3 An error in the conversion from LaTeX to XML has occurred here. [v3] ->F^e5 h3[v3]}]

References

[1] A. Apelblat and N. Kravitsky, Integral representations of derivatives and integrals with respect to the order of the Bessel functions J v ( t ) , I v ( t ) , the Anger function 𝐉 v ( t ) and the integral Bessel function J i v ( t ) , IMA J. Appl. Math. 34 (1985), no. 2, 187–210. 10.1093/imamat/34.2.187Search in Google Scholar

[2] V. Blomer, Applications of the Kuznetsov formula on G L ( 3 ) , Invent. Math. 194 (2013), no. 3, 673–729. 10.1007/s00222-013-0454-3Search in Google Scholar PubMed PubMed Central

[3] V. Blomer and J. Buttcane, Global decomposition of GL ( 3 ) Kloosterman sums and the spectral large sieve, J. Reine Angew. Math. 757 (2019), 51–88. 10.1515/crelle-2017-0034Search in Google Scholar

[4] V. Blomer and J. Buttcane, On the subconvexity problem for L-functions on GL ( 3 ) , Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 6, 1441–1500. 10.24033/asens.2451Search in Google Scholar

[5] V. Blomer, G. Harcos and P. Maga, On the global sup-norm of GL ( 3 ) cusp forms, Israel J. Math. 229 (2019), no. 1, 357–379. 10.1007/s11856-018-1805-ySearch in Google Scholar

[6] V. Blomer, R. Khan and M. Young, Distribution of mass of holomorphic cusp forms, Duke Math. J. 162 (2013), no. 14, 2609–2644. 10.1215/00127094-2380967Search in Google Scholar

[7] D. Bump, S. Friedberg and D. Goldfeld, Poincaré series and Kloosterman sums for SL ( 3 , 𝐙 ) , Acta Arith. 50 (1988), no. 1, 31–89. 10.4064/aa-50-1-31-89Search in Google Scholar

[8] J. Buttcane, Sums of SL(3,Z) Kloosterman Sums, ProQuest LLC, Ann Arbor, 2012; Thesis (Ph.D.)–University of California, Los Angeles. Search in Google Scholar

[9] J. Buttcane, On sums of S L ( 3 , ) Kloosterman sums, Ramanujan J. 32 (2013), no. 3, 371–419. 10.1007/s11139-013-9488-9Search in Google Scholar

[10] J. Buttcane, The spectral Kuznetsov formula on S L ( 3 ) , Trans. Amer. Math. Soc. 368 (2016), no. 9, 6683–6714. 10.1090/tran/6833Search in Google Scholar

[11] J. Buttcane, Higher weight on GL ( 3 ) . I: The Eisenstein series, Forum Math. 30 (2018), no. 3, 681–722. 10.1515/forum-2017-0060Search in Google Scholar

[12] J. Buttcane, Higher weight on GL ( 3 ) , II: The cusp forms, Algebra Number Theory 12 (2018), no. 10, 2237–2294. 10.2140/ant.2018.12.2237Search in Google Scholar

[13] J. Buttcane, The arithmetic Kuznetsov formula on GL ( 3 ) , I: The Whittaker case, Rev. Mat. Iberoam. 35 (2019), no. 7, 2093–2118. 10.4171/rmi/1113Search in Google Scholar

[14] J. Buttcane, Kuznetsov, Petersson and Weyl on GL ( 3 ) , I: The principal series forms, Amer. J. Math. 142 (2020), no. 2, 595–626. 10.1353/ajm.2020.0016Search in Google Scholar

[15] J. Buttcane, Kuznetsov, Petersson and Weyl on G L ( 3 ) , II: The generalized principal series forms, Math. Ann. 380 (2021), no. 1–2, 231–266. Search in Google Scholar

[16] J. Buttcane, The arithmetic Kuznetsov formula on GL ( 3 ) , II: The general case, Algebra Number Theory 16 (2022), no. 3, 567–646. 10.2140/ant.2022.16.567Search in Google Scholar

[17] J. W. Cogdell and I. Piatetski-Shapiro, The Arithmetic and Spectral Analysis of Poincaré Series, Perspect. Math. 13, Academic Press, Boston, 1990. Search in Google Scholar

[18] T. M. Dunster, On the order derivatives of Bessel functions, Constr. Approx. 46 (2017), no. 1, 47–68. 10.1007/s00365-016-9355-1Search in Google Scholar

[19] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. II, Robert E. Krieger, Melbourne, 1981. Search in Google Scholar

[20] S. Friedberg, Poincaré series for GL ( n ) : Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Z. 196 (1987), no. 2, 165–188. 10.1007/BF01163653Search in Google Scholar

[21] D. Goldfeld and A. Kontorovich, On the determination of the Plancherel measure for Lebedev–Whittaker transforms on GL ( n ) , Acta Arith. 155 (2012), no. 1, 15–26. 10.4064/aa155-1-2Search in Google Scholar

[22] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier/Academic Press, Amsterdam, 2015. Search in Google Scholar

[23] J. Heinloth, B.-C. Ngô and Z. Yun, Kloosterman sheaves for reductive groups, Ann. of Math. (2) 177 (2013), no. 1, 241–310. 10.4007/annals.2013.177.1.5Search in Google Scholar

[24] H. H. Kim, Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. Search in Google Scholar

[25] E. M. Kıral and M. Nakasuji, Parametrization of Kloosterman sets and SL 3 -Kloosterman sums, Adv. Math. 403 (2022), Paper No. 108392. 10.1016/j.aim.2022.108392Search in Google Scholar

[26] N. V. Kuznecov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N. S.) 111(153) (1980), no. 3, 334–383, 479. Search in Google Scholar

[27] R. P. Langlands, Beyond endoscopy, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University, Baltimore (2004), 611–697. Search in Google Scholar

[28] X. Li, Upper bounds on L-functions at the edge of the critical strip, Int. Math. Res. Not. IMRN 2010 (2010), no. 4, 727–755. Search in Google Scholar

[29] J. V. Linnik, Additive problems and eigenvalues of the modular operators, Proceedings of the International Congress on Mathematics (Stockholm 1962), Mittag-Leffler Institute, Djursholm (1963), 270–284. Search in Google Scholar

[30] W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.22 of 2019-03-15. Search in Google Scholar

[31] G. Stevens, Poincaré series on GL ( r ) and Kloostermann sums, Math. Ann. 277 (1987), no. 1, 25–51. 10.1007/BF01457276Search in Google Scholar

[32] E. P. van den Ban and J. J. Kuit, Cusp forms for reductive symmetric spaces of split rank one, Represent. Theory 21 (2017), 467–533. 10.1090/ert/507Search in Google Scholar

[33] N. R. Wallach, Real Reductive Groups. II, Pure Appl. Math. 132, Academic Press, Boston, 1992. Search in Google Scholar

[34] N. R. Wallach, On the Whittaker Plancherel theorem for real reductive groups, preprint (2017), https://arxiv.org/abs/1705.06787. Search in Google Scholar

Received: 2022-05-27
Revised: 2023-03-15
Published Online: 2023-06-27
Published in Print: 2023-07-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0165/html
Scroll to top button