Home Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces
Article
Licensed
Unlicensed Requires Authentication

Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces

  • Gabriel Larotonda ORCID logo EMAIL logo
Published/Copyright: September 5, 2019

Abstract

We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient MG/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.


Communicated by Karl-Hermann Neeb


Award Identifier / Grant number: PIP 2014 11220130100525

Award Identifier / Grant number: PICT 2015 1505

Funding statement: This research was supported by CONICET (PIP 2014 11220130100525) and ANPCyT (PICT 2015 1505).

Acknowledgements

The author would like to thank the anonymous referee for her/his valuable suggestions, which helped to improve the quality of the final version of this paper.

References

[1] J. C. Álvarez Paiva and G. Berck, What is wrong with the Hausdorff measure in Finsler spaces, Adv. Math. 204 (2006), no. 2, 647–663. 10.1016/j.aim.2005.06.007Search in Google Scholar

[2] J. C. Álvarez Paiva and C. E. Durán, Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2409–2417. 10.1090/S0002-9939-01-05910-XSearch in Google Scholar

[3] P. Andreev, Foundations of singular Finsler geometry, Eur. J. Math. 3 (2017), no. 4, 767–787. 10.1007/s40879-017-0169-xSearch in Google Scholar

[4] E. Andruchow and A. C. Antunez, Quotient p-Schatten metrics on spheres, Rev. Un. Mat. Argentina 58 (2017), no. 1, 21–36. Search in Google Scholar

[5] E. Andruchow, E. Chiumiento and G. Larotonda, Homogeneous manifolds from noncommutative measure spaces, J. Math. Anal. Appl. 365 (2010), no. 2, 541–558. 10.1016/j.jmaa.2009.11.024Search in Google Scholar

[6] E. Andruchow and G. Larotonda, Hopf–Rinow theorem in the Sato Grassmannian, J. Funct. Anal. 255 (2008), no. 7, 1692–1712. 10.1016/j.jfa.2008.07.027Search in Google Scholar

[7] E. Andruchow, G. Larotonda and L. Recht, Finsler geometry and actions of the p-Schatten unitary groups, Trans. Amer. Math. Soc. 362 (2010), no. 1, 319–344. 10.1090/S0002-9947-09-04877-6Search in Google Scholar

[8] E. Andruchow, G. Larotonda, L. Recht and A. Varela, The left-invariant metric in the general linear group, J. Geom. Phys. 86 (2014), 241–257. 10.1016/j.geomphys.2014.08.009Search in Google Scholar

[9] E. Andruchow and A. Varela, Metrics in the sphere of a C-module, Cent. Eur. J. Math. 5 (2007), no. 4, 639–653. 10.2478/s11533-007-0025-1Search in Google Scholar

[10] J. Antezana, G. Larotonda and A. Varela, Optimal paths for symmetric actions in the unitary group, Comm. Math. Phys. 328 (2014), no. 2, 481–497. 10.1007/s00220-014-2041-xSearch in Google Scholar

[11] C. J. Atkin, The Finsler geometry of groups of isometries of Hilbert space, J. Aust. Math. Soc. Ser. A 42 (1987), no. 2, 196–222. 10.1017/S1446788700028202Search in Google Scholar

[12] C. J. Atkin, The Finsler geometry of certain covering groups of operator groups, Hokkaido Math. J. 18 (1989), no. 1, 45–77. 10.14492/hokmj/1381517780Search in Google Scholar

[13] D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Grad. Texts in Math. 200, Springer, New York, 2000. 10.1007/978-1-4612-1268-3Search in Google Scholar

[14] J. Becerra Guerrero and A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces, Extracta Math. 17 (2002), no. 1, 1–58. Search in Google Scholar

[15] P. Belkale, Quantum generalization of the Horn conjecture, J. Amer. Math. Soc. 21 (2008), no. 2, 365–408. 10.1090/S0894-0347-07-00584-XSearch in Google Scholar

[16] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. I (in Russian), Sibirsk. Mat. Zh. 29 (1988), no. 6, 17–29; translation in Siberian Math. J. 29 (1988), no. 6, 887–897. 10.1007/BF00972413Search in Google Scholar

[17] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. II (in Russian), Sibirsk. Mat. Zh. 30 (1989), no. 2, 14–28, 225; translation in Siberian Math. J. 30 (1989), no. 2, 180–191. 10.1007/BF00971372Search in Google Scholar

[18] M. J. Bergvelt and M. A. Guest, Actions of loop groups on harmonic maps, Trans. Amer. Math. Soc. 326 (1991), no. 2, 861–886. 10.1090/S0002-9947-1991-1062870-5Search in Google Scholar

[19] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer, New York, 1997. 10.1007/978-1-4612-0653-8Search in Google Scholar

[20] R. Bhatia and J. A. R. Holbrook, A softer, stronger Lidskiĭ theorem, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 75–83. 10.1007/BF02874648Search in Google Scholar

[21] R. Bhatia, T. Jain and Y. Lim, On the Bures–Wasserstein distance between positive definite matrices, Expo. Math. 37 (2019), no. 2, 165–191. 10.1016/j.exmath.2018.01.002Search in Google Scholar

[22] M. Bialy and L. Polterovich, Geodesics of Hofer’s metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994), no. 1, 273–292. 10.1215/S0012-7094-94-07609-6Search in Google Scholar

[23] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math. 33, American Mathematical Society, Providence, 2001. 10.1090/gsm/033Search in Google Scholar

[24] B. Clarke, The metric geometry of the manifold of Riemannian metrics over a closed manifold, Calc. Var. Partial Differential Equations 39 (2010), no. 3–4, 533–545. 10.1007/s00526-010-0323-5Search in Google Scholar

[25] C. Conde and G. Larotonda, Manifolds of semi-negative curvature, Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 670–704. 10.1112/plms/pdp042Search in Google Scholar

[26] G. Corach and A. L. Maestripieri, Positive operators on Hilbert space: A geometrical view point, Colloquium on Homology and Representation Theory (in Spanish) Boletin de la Academia Nacional de Ciencias, Córdoba (2000), 81–94. Search in Google Scholar

[27] G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math. 4 (1993), no. 2, 193–202. 10.1142/S0129167X9300011XSearch in Google Scholar

[28] P. de la Harpe, Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, Berlin, 1972. 10.1007/BFb0071306Search in Google Scholar

[29] J. Dittmann, Some properties of the Riemannian Bures metric on mixed states, J. Geom. Phys. 13 (1994), no. 2, 203–206. 10.1016/0393-0440(94)90027-2Search in Google Scholar

[30] C. E. Durán, L. E. Mata-Lorenzo and L. Recht, Natural variational problems in the Grassmann manifold of a C*-algebra with trace, Adv. Math. 154 (2000), no. 1, 196–228. 10.1006/aima.2000.1924Search in Google Scholar

[31] C. E. Durán, L. E. Mata-Lorenzo and L. Recht, Metric geometry in homogeneous spaces of the unitary group of a C*-algebra. I. Minimal curves, Adv. Math. 184 (2004), no. 2, 342–366. 10.1016/S0001-8708(03)00148-8Search in Google Scholar

[32] C. E. Durán, L. E. Mata-Lorenzo and L. Recht, Metric geometry in homogeneous spaces of the unitary group of a C-algebra. II. Geodesics joining fixed endpoints, Integral Equations Operator Theory 53 (2005), no. 1, 33–50. 10.1007/s00020-003-1305-1Search in Google Scholar

[33] K. Fan and A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc. 6 (1955), 111–116. 10.1090/S0002-9939-1955-0067841-7Search in Google Scholar

[34] D. S. Freed, The geometry of loop groups, J. Differential Geom. 28 (1988), no. 2, 223–276. 10.4310/jdg/1214442279Search in Google Scholar

[35] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 3rd ed., Universitext, Springer, Berlin, 2004. 10.1007/978-3-642-18855-8Search in Google Scholar

[36] H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), no. 2, 347–409. 10.1006/jfan.2002.3942Search in Google Scholar

[37] M. Goldberg and E. G. Straus, Norm properties of C-numerical radii, Linear Algebra Appl. 24 (1979), 113–131. 10.1016/0024-3795(79)90152-6Search in Google Scholar

[38] L. A. Harris and W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), no. 3, 666–674. 10.1215/ijm/1256049017Search in Google Scholar

[39] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Mod. Birkhäuser Class., Birkhäuser, Basel, 2011. 10.1007/978-3-0348-0104-1Search in Google Scholar

[40] A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Math. Surveys Monogr. 53, American Mathematical Society, Providence, 1997. 10.1090/surv/053Search in Google Scholar

[41] A. Kriegl, P. W. Michor and A. Rainer, An exotic zoo of diffeomorphism groups on n, Ann. Global Anal. Geom. 47 (2015), no. 2, 179–222. 10.1007/s10455-014-9442-0Search in Google Scholar

[42] F. Lalonde and D. McDuff, Hofer’s L-geometry: Energy and stability of Hamiltonian flows. I, II, Invent. Math. 122 (1995), no. 1, 1–33, 35–69. 10.1007/BF01231437Search in Google Scholar

[43] G. Larotonda, Nonpositive curvature: a geometrical approach to Hilbert–Schmidt operators, Differential Geom. Appl. 25 (2007), no. 6, 679–700. 10.1016/j.difgeo.2007.06.016Search in Google Scholar

[44] G. Larotonda, Norm inequalities in operator ideals, J. Funct. Anal. 255 (2008), no. 11, 3208–3228. 10.1016/j.jfa.2008.06.028Search in Google Scholar

[45] D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), no. 5, 1421–1433. 10.1016/j.geomphys.2006.11.004Search in Google Scholar

[46] T. Marquis and K.-H. Neeb, Half-Lie groups, Transform. Groups 23 (2018), no. 3, 801–840. 10.1007/s00031-018-9485-6Search in Google Scholar

[47] J. H. McAlpin, Infinite Dimensional Manifolds and Morse Theory, ProQuest LLC, Ann Arbor, 1965; Thesis (Ph.D.)–Columbia University. Search in Google Scholar

[48] A. C. G. Mennucci, On asymmetric distances, Anal. Geom. Metr. Spaces 1 (2013), 200–231. 10.2478/agms-2013-0004Search in Google Scholar

[49] A. C. G. Mennucci and A. Duci, Banach-like distances and metric spaces of compact sets, SIAM J. Imaging Sci. 8 (2015), no. 1, 19–66. 10.1137/140972512Search in Google Scholar

[50] P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 1–48. 10.4171/JEMS/37Search in Google Scholar

[51] J. Milnor, Curvatures of left-invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293–329. 10.1016/S0001-8708(76)80002-3Search in Google Scholar

[52] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), 31–54. Search in Google Scholar

[53] K.-H. Neeb, A Cartan–Hadamard theorem for Banach–Finsler manifolds, Geom. Dedicata 95 (2002), 115–156. 10.1023/A:1021221029301Search in Google Scholar

[54] K.-H. Neeb, Monastir summer school: Infinite-dimensional Lie groups, Preprint 2433, TU Darmstadt, 2006. 10.4171/OWR/2006/55Search in Google Scholar

[55] K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), no. 2, 291–468. 10.1007/s11537-006-0606-ySearch in Google Scholar

[56] H. Porta and L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), no. 3, 464–466. 10.1090/S0002-9939-1987-0891146-6Search in Google Scholar

[57] W. Rudin, Functional Analysis, 2nd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. Search in Google Scholar

[58] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979. 10.1007/978-1-4612-6188-9Search in Google Scholar

[59] R. C. Thompson, Matrix type metric inequalities, Linear and Multilinear Algebra 5 (1977/78), no. 4, 303–319. 10.1080/03081087808817211Search in Google Scholar

[60] H. Upmeier, Symmetric Banach Manifolds and Jordan C-algebras, North-Holland Math. Stud. 104, North-Holland, Amsterdam, 1985. Search in Google Scholar

Received: 2019-05-13
Revised: 2019-08-10
Published Online: 2019-09-05
Published in Print: 2019-11-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0127/html?lang=en
Scroll to top button