Home A note on split extensions of bialgebras
Article
Licensed
Unlicensed Requires Authentication

A note on split extensions of bialgebras

  • Xabier García-Martínez ORCID logo and Tim Van der Linden EMAIL logo
Published/Copyright: January 23, 2018

Abstract

We prove a universal characterization of Hopf algebras among cocommutative bialgebras over an algebraically closed field: a cocommutative bialgebra is a Hopf algebra precisely when every split extension over it admits a join decomposition. We also explain why this result cannot be extended to a non-cocommutative setting.


Communicated by Karl-Hermann Neeb


Funding source: Xunta de Galicia

Award Identifier / Grant number: GRC2013-045

Award Identifier / Grant number: MTM2016-79661-P

Funding statement: This work was partially supported by Ministerio de Economía y Competitividad (Spain), grant MTM2016-79661-P (AEI/FEDER, UE, support included). The first author was also supported by Xunta de Galicia, grant GRC2013-045 (European FEDER support included), by an FPU scholarship of the Ministerio de Educación, Cultura y Deporte (Spain) and by a Fundación Barrié scholarship. The second author is a Research Associate of the Fonds de la Recherche Scientifique–FNRS.

Acknowledgements

Thanks to Georgios Charalambous, José Manuel Fernández Vilaboa, Isar Goyvaerts, Marino Gran, James R. A. Gray, Gabriel Kadjo and Joost Vercruysse for fruitful discussions and useful comments. We would also like to thank the University of Cape Town and Stellenbosch University for their kind hospitality during our stay in South Africa.

References

[1] A. L. Agore, Monomorphisms of coalgebras, Colloq. Math. 120 (2010), no. 1, 149–155. 10.4064/cm120-1-11Search in Google Scholar

[2] A. L. Agore, Limits of coalgebras, bialgebras and Hopf algebras, Proc. Amer. Math. Soc. 139 (2011), no. 3, 855–863. 10.1090/S0002-9939-2010-10542-7Search in Google Scholar

[3] N. Andruskiewitsch and J. Devoto, Extensions of Hopf algebras, Algebra i Analiz 7 (1995), no. 1, 22–61. Search in Google Scholar

[4] F. Borceux and D. Bourn, Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Math. Appl. 566, Kluwer Academic Publishers, Dordrecht, 2004. 10.1007/978-1-4020-1962-3Search in Google Scholar

[5] D. Bourn, Normalization equivalence, kernel equivalence and affine categories, Category Theory (Como 1990), Lecture Notes in Math. 1488, Springer, Berlin (1991), 43–62. 10.1007/BFb0084212Search in Google Scholar

[6] D. Bourn, 3×3 lemma and protomodularity, J. Algebra 236 (2001), no. 2, 778–795. 10.1006/jabr.2000.8526Search in Google Scholar

[7] X. García-Martínez, A new characterisation of groups amongst monoids, Appl. Categ. Structures 25 (2017), no. 4, 659–661. 10.1007/s10485-016-9471-xSearch in Google Scholar

[8] M. Gran, G. Kadjo and J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24 (2016), no. 3, 269–282. 10.1007/s10485-015-9396-9Search in Google Scholar

[9] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), no. 2–3, 367–386. 10.1016/S0022-4049(01)00103-7Search in Google Scholar

[10] G. Kadjo, Semi-abelian aspects of cocommutative Hopf algebras Ph.D. thesis, Université catholique de Louvain, 2016. Search in Google Scholar

[11] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), no. 1, 29–51. 10.1016/0021-8693(77)90208-3Search in Google Scholar

[12] A. Montoli, D. Rodelo and T. Van der Linden, Two characterisations of groups amongst monoids, J. Pure Appl. Algebra 222 (2018), no. 4, 747–777. 10.1016/j.jpaa.2017.05.005Search in Google Scholar

[13] C. Năstăsescu and B. Torrecillas, Torsion theories for coalgebras, J. Pure Appl. Algebra 97 (1994), no. 2, 203–220. 10.1016/0022-4049(94)00009-3Search in Google Scholar

[14] H.-E. Porst, The formal theory of Hopf algebras. Part I: Hopf monoids in a monoidal category, Quaest. Math. 38 (2015), no. 5, 631–682. 10.2989/16073606.2014.981736Search in Google Scholar

[15] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969. 10.1007/BFb0101433Search in Google Scholar

[16] T. Van der Linden, Simplicial homotopy in semi-abelian categories, J. K-Theory 4 (2009), no. 2, 379–390. 10.1017/is008008022jkt070Search in Google Scholar

Received: 2017-01-26
Published Online: 2018-01-23
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2017-0016/html?lang=en
Scroll to top button