Home Mathematics A note on the Hilali conjecture
Article
Licensed
Unlicensed Requires Authentication

A note on the Hilali conjecture

  • Manuel Amann EMAIL logo
Published/Copyright: May 21, 2016

Abstract

In this short note we observe that the Hilali conjecture holds for 2-stage spaces, i.e. we argue that the dimension of the rational cohomology is at least as large as the dimension of the rational homotopy groups for these spaces. We also prove the Hilali conjecture for a class of spaces which puts it into the context of fibrations.

MSC 2010: 55Q52; 55P62

Communicated by Frederick R. Cohen


References

[1] Félix Y., Halperin S. and Thomas J.-C., Rational Homotopy Theory, Grad. Texts in Math. 205, Springer, New York, 2001. 10.1007/978-1-4613-0105-9Search in Google Scholar

[2] Félix Y., Oprea J. and Tanré D., Algebraic Models in Geometry, Oxf. Grad. Texts Math. 17, Oxford University Press, Oxford, 2008. 10.1093/oso/9780199206513.001.0001Search in Google Scholar

[3] Fernández de Bobilla J., Fresán J., Munõz V. and Murillo A., The Hilali conjecture for hyperelliptic spaces, Mathematics Without Boundaries, Springer, New York (2014), 21–36. 10.1007/978-1-4939-1106-6_2Search in Google Scholar

[4] Hilali M. R., Action du tore Tn sur les espaces simplement connexes, PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, 1980. Search in Google Scholar

[5] Hilali M. R. and Mamouni M. I., A conjectured lower bound for the cohomological dimension of elliptic spaces, J. Homotopy Relat. Struct. 3 (2008), no. 1, 379–384. Search in Google Scholar

[6] Hilali M. R. and Mamouni M. I., A lower bound of cohomologic dimension for an elliptic space, Topology Appl. 156 (2008), no. 2, 274–283. 10.1016/j.topol.2008.07.011Search in Google Scholar

[7] Hilali M. R. and Mamouni M. I., A conjectured lower bound for the cohomological dimension of elliptic spaces – Recent results in some simple cases, preprint 2013, http://arxiv.org/abs/0803.3821. Search in Google Scholar

[8] Hilali M. R. and Mamouni M. I., La conjecture H: Une minoration de la dimension cohomologique pour un espace elliptique, preprint 2013, https://arxiv.org/abs/0712.3784. Search in Google Scholar

[9] Jessup B. and Lupton G., Free torus actions and two-stage spaces, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 191–207. 10.1017/S0305004103007242Search in Google Scholar

[10] Nakamura O. and Yamaguchi T., Lower bounds of Betti numbers of elliptic spaces with certain formal dimensions, Kochi J. Math. 6 (2001), 9–28. Search in Google Scholar

Received: 2015-4-27
Revised: 2016-2-2
Published Online: 2016-5-21
Published in Print: 2017-3-1

© 2017 by De Gruyter

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0078/pdf?lang=en
Scroll to top button