Abstract.
Given a quasi-modular form
of nonzero weight for
with algebraic Fourier coefficients, we
consider the nonzero values of
at the algebraic points of the
moduli space
. We
show that these special values are transcendental numbers. We also
establish the analogous result in the setting of Drinfeld
quasi-modular forms.
Received: 2010-03-02
Revised: 2010-05-10
Published Online: 2012-05-01
Published in Print: 2012-May
© 2012 by Walter de Gruyter Berlin Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Masthead
- -variable fractals: dimension results
- Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators
- Phylogenetic analysis and homology
- Rational homotopy type of the moduli of representations with Borel mold
- Transcendence of special values of quasi-modular forms
- Use of reproducing kernels and Berezin symbols technique in some questions of operator theory
- Infinite-dimensional supermanifolds over arbitrary base fields
- Weyl and Zariski chambers on K3 surfaces
- The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences
- Solving algebraic equations in roots of unity
Keywords for this article
Transcendence;
quasi-modular forms;
Drinfeld quasi-modular forms
Articles in the same Issue
- Masthead
- -variable fractals: dimension results
- Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators
- Phylogenetic analysis and homology
- Rational homotopy type of the moduli of representations with Borel mold
- Transcendence of special values of quasi-modular forms
- Use of reproducing kernels and Berezin symbols technique in some questions of operator theory
- Infinite-dimensional supermanifolds over arbitrary base fields
- Weyl and Zariski chambers on K3 surfaces
- The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences
- Solving algebraic equations in roots of unity