The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
-
J. A. Tenreiro Machado
Abstract
This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.
Acknowledgements
The author thanks the reviewers for the constructive comments that helped improving considerably the paper.
References
[1] F. B. Adda, Geometric interpretation of the fractional derivative. Journal of Fractional Calculus 11 (1997), 21–52.Search in Google Scholar
[2] F. B. Adda, Interprѐtation gѐometrique de la diffѐrentiabilitѐ et du gradient d’ordre rѐel. Comptes Rendus de l’Acadѐmie des Sciences - Series I - Mathematics 326, No 8 (1998), 931–934.Search in Google Scholar
[3] C. H. Bennett, Logical reversibility of computation. IBM Journal of Research and Development 17, No 6 (1973), 525–532; DOI: 10.1147/rd.176.0525.10.1147/rd.176.0525Search in Google Scholar
[4] P. J. Brancazio, Trajectory of a fly ball. The Physics Teacher 23, No 1 (1985), 20–23; DOI: 10.1119/1.2341702.10.1119/1.2341702Search in Google Scholar
[5] P. Denning and T. Lewis, Computers that can run backwards. American Scientist 105, No 5 (2017), # 270; DOI: 10.1511/2017.105.5.270.10.1511/2017.105.5.270Search in Google Scholar
[6] H. Feichtinger and K. Gröchenig, Theory and practice of irregular sampling. In: Wavelets: Mathematics and Applications (Eds. J. Benedetto and M. Frazier), CRC Press, Boca Raton (1993), 305–363.10.1201/9781003210450-10Search in Google Scholar
[7] M. P. Frank, Throwing computing into reverse. IEEE Spectrum 54, No 9 (2017), 32–37; DOI: 10.1109/MSPEC.2017.8012237.10.1109/MSPEC.2017.8012237Search in Google Scholar
[8] A. R. Hall, Galileo and the science of motion. The British Journal for the History of Science 2, No 3 (1965), 185–199; DOI: 10.1017/s0007087400002193.10.1017/s0007087400002193Search in Google Scholar
[9] R. Hilfer, Application of Fractional Calculus in Physics. World Scientific, Singapore (2000).10.1142/3779Search in Google Scholar
[10] R. Hilfer, Mathematical and physical interpretations of fractional derivatives and integrals. Chapter 3, in: A. Kochubei and Y. Luchko (Eds.), Handbook of Fractional Calculus. Volume 1: Basic Theory, De Gruyter, Berlin (2019), 47–85; DOI: 10.1515/9783110571622-003.10.1515/9783110571622-003Search in Google Scholar
[11] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam (2006).Search in Google Scholar
[12] A. Kochubei and Y. Luchko (Eds.), Handbook of Fractional Calculus with Applications, Volume 1: Basic Theory. De Gruyter, Berlin (2019).10.1515/9783110571622Search in Google Scholar
[13] A. Kochubei and Y. Luchko (Eds.), Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations. De Gruyter, Berlin (2019).10.1515/9783110571660Search in Google Scholar
[14] D. C. Labora, A. M. Lopes, and J. T. Machado, The Lorentz transformations and one observation in the perspective of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 78 (2019), # 104855; DOI: 10.1016/j.cnsns.2019.104855.10.1016/j.cnsns.2019.104855Search in Google Scholar
[15] R. Landauer, Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, No 3 (1961), 183–191; DOI: 10.1147/rd.53.0183.10.1147/rd.53.0183Search in Google Scholar
[16] K.-J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic space. Journal of Computer and System Sciences 60, No 2 (2000), 354–367; DOI: 10.1006/jcss.1999.1672.10.1006/jcss.1999.1672Search in Google Scholar
[17] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynamics 29, No 1/4 (2002), 57–98; DOI: 10.1023/a:1016586905654.10.1023/a:1016586905654Search in Google Scholar
[18] J. Machado, Dynamics of a backlash chain. Central European Journal of Physics 11, No 10 (2013), 1268–1274; DOI: 10.2478/s11534-013-0234-0.10.2478/s11534-013-0234-0Search in Google Scholar
[19] J. A. T. Machado, A probabilistic interpretation of the fractional-order differentiation. Fractional Calculus and Applied Analysis, 6, No 1 (2003), 73–80.Search in Google Scholar
[20] J. A. T. Machado, Fractional derivatives: Probability interpretation and frequency response of rational approximations. Communicationsin Nonlinear Science and Numerical Simulations 14, No 9-10 (2009), 3492–3497; DOI: 10.1016/j.cnsns.2009.02.004.10.1016/j.cnsns.2009.02.004Search in Google Scholar
[21] J. A. T. Machado and V. Kiryakova, Recent history of the fractional calculus: data and statistics. Chapter 1, in: A. Kochubei and Y. Luchko (Eds.), Handbook of Fractional Calculus. Vol. 1: Basic Theory, De Gruyter (2019), 1–21; DOI: 10.1515/9783110571622-001.10.1515/9783110571622-001Search in Google Scholar
[22] J. T. Machado, Fractional order modelling of dynamic backlash. Mechatronics 23, No 7 (2013), 741–745; DOI: 10.1016/j.mechatronics.2013.01.011.10.1016/j.mechatronics.2013.01.011Search in Google Scholar
[23] F. Marvasti (Ed.), Nonuniform Sampling. Springer, New York (2001).10.1007/978-1-4615-1229-5Search in Google Scholar
[24] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993).Search in Google Scholar
[25] F. Molz, G. Fix, and S. Lu, A physical interpretation for the fractional derivative in Levy diffusion. Applied Mathematics Letters 15, No 7 (2002), 907–911; DOI: 10.1016/s0893-9659(02)00062-9.10.1016/s0893-9659(02)00062-9Search in Google Scholar
[26] M. Moshrefi-Torbati and J. K. Hammond, Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute, 335, No 6 (1998), 1077–1086; DOI: 10.1016/s0016-0032(97)00048-3.10.1016/s0016-0032(97)00048-3Search in Google Scholar
[27] B. Mu, J. Guo, L. Y. Wang, G. Yin, L. Xu, and W. X. Zheng, Identification of linear continuous-time systems under irregular and random output sampling. Automatica 335, No 60 (2015), 100–114; DOI: 10.1016/j.automatica.2015.07.009.10.1016/j.automatica.2015.07.009Search in Google Scholar
[28] R. R. Nigmatullin, A fractional integral and its physical interpretation. Theoretical and Mathematical Physics 90, No 3 (1992), 242–251; DOI: 10.1007/BF01036529.10.1007/BF01036529Search in Google Scholar
[29] M. D. Ortigueira and J. T. Machado, What is a fractional derivative? Journal of Computational Physics 293 (2015), 4–13; DOI: 10.1016/j.jcp.2014.07.019.10.1016/j.jcp.2014.07.019Search in Google Scholar
[30] M. D. Ortigueira and J. T. Machado, New discrete-time fractional derivatives based on the bilinear transformation: Definitions and properties. Journal of Advanced Research 25 (2020), 1–10; DOI: 10.1016/j.jare.2020.02.011.10.1016/j.jare.2020.02.011Search in Google Scholar PubMed PubMed Central
[31] M. D. Ortigueira, D. Valѐrio, and J. T. Machado, Variable order fractional systems. Communications in Nonlinear Science and Numerical Simulation 71 (2019), 231–243; DOI: 10.1016/j.cnsns.2018.12.003.10.1016/j.cnsns.2018.12.003Search in Google Scholar
[32] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis 5, No 4 (2002), 367–386.Search in Google Scholar
[33] R. S. Rutman, On the paper by R. R. Nigmatullin “A fractional integral and its physical interpretation”. Theoretical and Mathematical Physics 100, No 3 (1994), 1154–1156; DOI: 10.1007/BF01018580.10.1007/BF01018580Search in Google Scholar
[34] R. S. Rutman, On physical interpretations of fractional integration and differentiation. Theoretical and Mathematical Physics 105, No 3 (1995), 393–404; DOI: 10.1007/BF02070871.10.1007/BF02070871Search in Google Scholar
[35] S. Samko, Fractional integration and differentiation of variable order: An overview. Nonlinear Dynamics 71, No 4 (2012), 653–662; DOI: 10.1007/s11071-012-0485-0.10.1007/s11071-012-0485-0Search in Google Scholar
[36] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publ., Amsterdam (1993).Search in Google Scholar
[37] S. G. Samko, Fractional integration and differentiation of variable order. Analysis Mathematica 21, No 3 (1995), 213–236; DOI: 10.1007/BF01911126.10.1007/BF01911126Search in Google Scholar
[38] A. A. Stanislavsky, Probability interpretation of the integral of fractional order. Theoretical and Mathematical Physics 138, No 3 (2004), 418–431; DOI: 10.1023/B:TAMP.0000018457.70786.36.10.1023/B:TAMP.0000018457.70786.36Search in Google Scholar
[39] V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation 18, No 11 (2013), 2945–2948; DOI: 10.1016/j.cnsns.2013.04.001.10.1016/j.cnsns.2013.04.001Search in Google Scholar
[40] V. E. Tarasov, Geometric interpretation of fractional-order derivative. Fractional Calculus and Applied Analysis 19, No 5 (2016), 1200–1221; DOI: 10.1515/fca-2016-0062; https://www.degruyter.com/journal/key/FCA/19/5/html10.1515/fca-2016-0062;Search in Google Scholar
[41] V. E. Tarasov, Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundamenta Informaticae 151, No 1–4 (2017), 431–442; DOI: 10.3233/FI-2017-1502.10.3233/FI-2017-1502Search in Google Scholar
[42] V. E. Tarasov (Ed.), Handbook of Fractional Calculus with Applications. Volume 4, Applications in Physics, Part A. De Gruyter, Berlin (2019).Search in Google Scholar
[43] V. E. Tarasov (Ed.), Handbook of Fractional Calculus with Applications, Volume 5, Applications in Physics, Part B. De Gruyter, Berlin (2019).Search in Google Scholar
[44] F. B. Tatom, The relationship between fractional calculus and fractals. Fractals 3, No 1 (1995), 217–229; DOI: 10.1142/s0218348x95000175.10.1142/s0218348x95000175Search in Google Scholar
[45] G. S. Teodoro, J. T. Machado, and E. C. de Oliveira, A review of definitions of fractional derivatives and other operators. Journal of Computational Physics 388, (2019), 195–208; DOI: 10.1016/j.jcp.2019.03.008.10.1016/j.jcp.2019.03.008Search in Google Scholar
[46] M. Unser, Sampling-50 years after Shannon. Proceedings of the IEEE 88, No 4 (2000), 569–587; DOI: 10.1109/5.843002.10.1109/5.843002Search in Google Scholar
[47] D. Valѐrio, J. T. Machado, and V. Kiryakova, Some pioneers of the applications of fractional calculus. Fractional Calculus and Applied Analysis 17, No 2 (2014), 552–578; DOI: 10.2478/s13540-014-0185-1; https://www.degruyter.com/journal/key/FCA/17/2/html10.2478/s13540-014-0185-1;Search in Google Scholar
[48] R. Vio, M. Diaz-Trigo, and P. Andreani, Irregular time series in astronomy and the use of the lomb–scargle periodogram. Astronomy and Computing 1, 2013), 5–16; DOI: 10.1016/j.ascom.2012.12.001.10.1016/j.ascom.2012.12.001Search in Google Scholar
[49] P. Vitányi, Time, space, and energy in reversible computing. In: Proceedings of the 2nd Conference on Computing Frontiers - CF’05, ACM Press (2005).10.1145/1062261.1062335Search in Google Scholar
© 2021 Diogenes Co., Sofia
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 24–4–2021)
- Research Paper
- Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
- Tutorial paper
- The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
- Research Paper
- Fractional diffusion-wave equations: Hidden regularity for weak solutions
- Censored stable subordinators and fractional derivatives
- Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
- Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H∞ synthesis
- Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
- The rate of convergence on fractional power dissipative operator on compact manifolds
- Fractional Langevin type equations for white noise distributions
- Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
- Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
- The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
- Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
- Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 24–4–2021)
- Research Paper
- Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
- Tutorial paper
- The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
- Research Paper
- Fractional diffusion-wave equations: Hidden regularity for weak solutions
- Censored stable subordinators and fractional derivatives
- Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
- Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H∞ synthesis
- Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
- The rate of convergence on fractional power dissipative operator on compact manifolds
- Fractional Langevin type equations for white noise distributions
- Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
- Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
- The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
- Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
- Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems