On the summation of Taylor’s series on the contour of the domain of summability
-
Nikola Obrechkoff
Abstract
Editors’ notes [*]: In this paper N. Obrechkoff defined a general method of summation or, more precisely, a method of Borel (B) type for analytical continuation of complex function f defined by convergent series of the kind
which for p = 0 reduces to the well-known Mittag-Leffler functionEα (x). He obtained that
where η (x) → 0 as x → ∞. Note that in contemporary denotations, (*) is the 2-parameter Mittag-Leffler functionEα, μ (x) with μ = p + 1, known now as the Queen Function of Fractional Calculus (Gorenflo and Mainardi, 1997).
Further, the already proved theorems are specified for the Borel as well as for the Mittag-Leffler type summations. To this end, Obrechkoff studied the asymptotics of the function (see § 11)
References
[1] K. Knopp, Über das Eulersche Summierungsverfahren. Mathematische Zeitschrift15 (1922), 226–253; and 18 (1923), 125–156.Search in Google Scholar
[2] O. Perron, Uber eine Verallgemeinerung der Eulerschen Reihentrans-formation. Mathematische Zeitschrift18 (1923), 157–172.10.1007/BF01192402Search in Google Scholar
[3] K. Knopp, Uber Polynomentwicklungen im Mitag-Lefflerschen Stern durch Anwendung der Eulerschen Reihentransformation. Acta Mathematica, 47, (1925), 313–33510.1007/BF02559516Search in Google Scholar
[4] G. Mittag-Leffler, Sur la representation analitique d’une branche uni-form d’une fonction monogene, 5 note. Acta Mathematica29 (1905), 101–181.10.1007/BF02403200Search in Google Scholar
[5] Y. Okada, Uber die Annaherung analytischer Funktionen. Mathematische Zeitschrift23 (1925), 62–71; and 27 (1927), 212–217.10.4099/jjm1924.1.0_37Search in Google Scholar
[6] N. Obrechkoff, Sur la sommation de la serie de Taylor sur le contour du domaine de sommabilite par les duverses methods. Atti del Congresso Internazionale dei Matematici, Bologna (1928).Search in Google Scholar
[7] N. Obrechkoff, On the summation of divergent series. Annuaire Univ. Sofia, Phys.-Math. Fac. 24, No 1 (1928), 93–160 (see p. 147).Search in Google Scholar
[8] [added by Eds, now] N. Obrechkoff, Sur la sommation de la serie de Taylor sur le contour du polygone de sommabilite par la methode de M. Borel. C. R. Acad. Paris186 (1928), 1813–1815.Search in Google Scholar
[9] N. Obrechkoff, Uber die Summierung der Taylorschen Reihe nach der Methode von Mittag-Leffler am Rande des Summierbarkeitsgebietes. In: Conge’s des mathematiciens des pays slaves, Warszawa (1929).Search in Google Scholar
[10] F. Hausdorff, Summationsmethoden und Momentfolgen. Mathematische Zeitschrift9 (1921), 74–100; and 9 (1921), 280–299.10.1007/BF01378337Search in Google Scholar
[11] G. Doetsch, Eine Verallgemeinerung der Borelschen Summa-bilitatstheorie der divirgenten Reihen. Inaugural Dissertation, Gottingen (1920), 56 pp.Search in Google Scholar
[12] M. Jacob, Uber die Aquivalenz der Cesaroschen und der Holdercshen Mittel fur Integrale bei gleicher reeller Ordnung k > 0. Mathematische Zeitschrift26 (1927), 672–682; Access to full text: .https://eudml.org/doc/167949.10.1007/BF01475480Search in Google Scholar
© 2016 Diogenes Co., Sofia
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 19–5–2016)
- Round Table Discussion
- Fractional Calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?
- Survey Paper
- Models of dielectric relaxation based on completely monotone functions
- Survey Paper
- Space-time fractional stochastic equations on regular bounded open domains
- Discussion Paper
- Geometric interpretation of fractional-order derivative
- Survey Paper
- Fractional calculus in image processing: a review
- Research Paper
- Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion
- Research Paper
- On the regional controllability of the sub-diffusion process with Caputo fractional derivative
- Discussion Survey
- There’s plenty of fractional at the bottom, I: Brownian motors and swimming microrobots
- Research Paper
- On a fractional differential inclusion with “maxima”
- Research Paper
- On time-fractional representation of an open system response
- Archive Paper
- On the summation of Taylor’s series on the contour of the domain of summability
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 19–5–2016)
- Round Table Discussion
- Fractional Calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?
- Survey Paper
- Models of dielectric relaxation based on completely monotone functions
- Survey Paper
- Space-time fractional stochastic equations on regular bounded open domains
- Discussion Paper
- Geometric interpretation of fractional-order derivative
- Survey Paper
- Fractional calculus in image processing: a review
- Research Paper
- Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion
- Research Paper
- On the regional controllability of the sub-diffusion process with Caputo fractional derivative
- Discussion Survey
- There’s plenty of fractional at the bottom, I: Brownian motors and swimming microrobots
- Research Paper
- On a fractional differential inclusion with “maxima”
- Research Paper
- On time-fractional representation of an open system response
- Archive Paper
- On the summation of Taylor’s series on the contour of the domain of summability