Home On the summation of Taylor’s series on the contour of the domain of summability
Article
Licensed
Unlicensed Requires Authentication

On the summation of Taylor’s series on the contour of the domain of summability

  • Nikola Obrechkoff
Published/Copyright: November 11, 2016

Abstract

Editors’ notes [*]: In this paper N. Obrechkoff defined a general method of summation or, more precisely, a method of Borel (B) type for analytical continuation of complex function f defined by convergent series of the kindc0+c1z+c2z2+. The main goal is the summation of such series at boundary points of the corresponding region of summability under conditions of the kind B for the singular points of the function f, as they have been introduced in his earlier paper [8], 1928.

Eαp(x)=n=0xnΓ(αn+p+1),0<α2,integerp0,asx,(*)

which for p = 0 reduces to the well-known Mittag-Leffler functionEα (x). He obtained thatEαp(x)=βxpβexβ+η(x),β=1α,for|argx|απ2

where η (x) → 0 as x → ∞. Note that in contemporary denotations, (*) is the 2-parameter Mittag-Leffler functionEα, μ (x) with μ = p + 1, known now as the Queen Function of Fractional Calculus (Gorenflo and Mainardi, 1997).

Further, the already proved theorems are specified for the Borel as well as for the Mittag-Leffler type summations. To this end, Obrechkoff studied the asymptotics of the function (see § 11)

MSC 2010: 33E12; 40G05; 40G10

References

[1] K. Knopp, Über das Eulersche Summierungsverfahren. Mathematische Zeitschrift15 (1922), 226–253; and 18 (1923), 125–156.Search in Google Scholar

[2] O. Perron, Uber eine Verallgemeinerung der Eulerschen Reihentrans-formation. Mathematische Zeitschrift18 (1923), 157–172.10.1007/BF01192402Search in Google Scholar

[3] K. Knopp, Uber Polynomentwicklungen im Mitag-Lefflerschen Stern durch Anwendung der Eulerschen Reihentransformation. Acta Mathematica, 47, (1925), 313–33510.1007/BF02559516Search in Google Scholar

[4] G. Mittag-Leffler, Sur la representation analitique d’une branche uni-form d’une fonction monogene, 5 note. Acta Mathematica29 (1905), 101–181.10.1007/BF02403200Search in Google Scholar

[5] Y. Okada, Uber die Annaherung analytischer Funktionen. Mathematische Zeitschrift23 (1925), 62–71; and 27 (1927), 212–217.10.4099/jjm1924.1.0_37Search in Google Scholar

[6] N. Obrechkoff, Sur la sommation de la serie de Taylor sur le contour du domaine de sommabilite par les duverses methods. Atti del Congresso Internazionale dei Matematici, Bologna (1928).Search in Google Scholar

[7] N. Obrechkoff, On the summation of divergent series. Annuaire Univ. Sofia, Phys.-Math. Fac. 24, No 1 (1928), 93–160 (see p. 147).Search in Google Scholar

[8] [added by Eds, now] N. Obrechkoff, Sur la sommation de la serie de Taylor sur le contour du polygone de sommabilite par la methode de M. Borel. C. R. Acad. Paris186 (1928), 1813–1815.Search in Google Scholar

[9] N. Obrechkoff, Uber die Summierung der Taylorschen Reihe nach der Methode von Mittag-Leffler am Rande des Summierbarkeitsgebietes. In: Conge’s des mathematiciens des pays slaves, Warszawa (1929).Search in Google Scholar

[10] F. Hausdorff, Summationsmethoden und Momentfolgen. Mathematische Zeitschrift9 (1921), 74–100; and 9 (1921), 280–299.10.1007/BF01378337Search in Google Scholar

[11] G. Doetsch, Eine Verallgemeinerung der Borelschen Summa-bilitatstheorie der divirgenten Reihen. Inaugural Dissertation, Gottingen (1920), 56 pp.Search in Google Scholar

[12] M. Jacob, Uber die Aquivalenz der Cesaroschen und der Holdercshen Mittel fur Integrale bei gleicher reeller Ordnung k > 0. Mathematische Zeitschrift26 (1927), 672–682; Access to full text: .https://eudml.org/doc/167949.10.1007/BF01475480Search in Google Scholar

Published Online: 2016-11-11
Published in Print: 2016-10-01

© 2016 Diogenes Co., Sofia

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0069/html
Scroll to top button