Home Teaching Tale Types to a Computer: A First Experiment with the Annotated Folktales Collection
Article
Licensed
Unlicensed Requires Authentication

Teaching Tale Types to a Computer: A First Experiment with the Annotated Folktales Collection

  • Johan Eklund

    Senior Lecturer

    EMAIL logo
    , Josh Hagedorn EMAIL logo and Sándor Darányi

    Professor

    EMAIL logo
Published/Copyright: July 18, 2023
Become an author with De Gruyter Brill

Abstract

Computational motif detection in folk narratives is an unresolved problem, partly because motifs are formally fluid, and because test collections to teach machine learning algorithms are not generally available or big enough to yield robust predictions for expert confirmation. As a result, standard tale typology based on texts as motif strings renders its computational reproduction an automatic classification exercise. In this brief communication, to report work in progress we use the Support Vector Machine algorithm on the ten best populated classes of the Annotated Folktales test collection, to predict text membership in their internationally accepted categories. The classification result was evaluated using recall, precision, and F1 scores. The F1 score was in the range 0.8–1.0 for all the selected tale types except for type 275 (The Race between Two Animals), which, although its recall rate was 1.0, suffered from a low precision.

About the authors

Johan Eklund

Senior Lecturer

Sándor Darányi

Professor

Acknowledgements

The authors are grateful to X anonymous reviewers for helpful comments on the manuscript.

6References

Abello, James/Broadwell, Peter/Tangherlini, Timothy R.: Computational Folkloristics. In: Communications of the ACM 55,7 (2012) 60–70. https://doi.org/10.1145/2209249.2209267.10.1145/2209249.2209267Search in Google Scholar

Berezkin, Yuri: Spread of folklore motifs as a proxy for information exchange. Contact zones and borderlines in Eurasia. In: Trames 19,1 (2015) 3–14. https://doi.org/10.3176/tr.2015.1.01.10.3176/tr.2015.1.01Search in Google Scholar

Berezkin, Yuri: Peopling of the New World from Data on Distributions of Folklore Motifs. In: Maths Meets Myths. Quantitative Approaches to Ancient Narratives, 71–89. Eds. Ralph Kenna/Máirín MacCarron/Pádraig MacCarron. Heidelberg 2017. https://doi.org/10.1007/978-3-319-39445-9_5.10.1007/978-3-319-39445-9_5Search in Google Scholar

Boehmke, B./Greenwell, B. M: Hands-On Machine Learning with R. New York 2019. https://doi.org/10.1201/9780367816377.10.1201/9780367816377Search in Google Scholar

Bortolini, Eugenio/Pagani, Luca/Crema, Enrico R./Sarno, Stefania/Barbieri, Chiara/Boattini, Alessio/Sazzini, Marco/Silva, Sara G. da/Martini, Gessica/Metspalu, Mait/Pettener, Davide/Luiselli, Donata/Tehrani, Jamshid J.: Inferring patterns of folktale diffusion using genomic data. In: Proceedings of the National Academy of Sciences 114,34 (2017) 9140–9145. https://doi.org/10.1073/pnas.1614395114.10.1073/pnas.1614395114Search in Google Scholar

Chambers, Nathanael/Jurafsky, Dan: Unsupervised learning of narrative event chains. In: Proceedings of ACL-08: HLT, 789–797 (June 2008).Search in Google Scholar

Christiansen, Reidar Th.: The Migratory Legends: A Proposed List of Types with a Systematic Catalogue of the Norwegian Variants. Helsinki 1992.Search in Google Scholar

Declerck, Thierry/Aman, Anastasia/Banzer, Martin/Macháček, Dominik/Schäfer, Lisa/Skachkova, Natalia: Multilingual Ontologies for the Representation and Processing of Folktales. In: Proceedings of the First Workshop on Language Technology for Digital Humanities in Central and (South-)Eastern Europe (2017) 20–23. https://doi.org/0.26615/978-954-452-046-5_003.Search in Google Scholar

Declerck, Thierry/Kostova, Antónia/Schäfer, Lisa: Towards a linked data access to folktales classified by Thompson’s motifs and Aarne-Thompson-Uther’s types. In: Proceedings of Digital Humanities (2017b) 1–4. https://www.dfki.de/fileadmin/user_upload/import/9028_Dh2017_LOD_TMI-ATU_final.pdf.Search in Google Scholar

Declerck, Thierry/Schäfer, Lisa: Porting past classification schemes for narratives to a linked data framework. In: Proceedings of DATeCH2017 (2017) 123–127. https://doi.org/10.1145/3078081.3078105.10.1145/3078081.3078105Search in Google Scholar

Eisenberg, Joshua D./Yarlott, Victor W./Finlayson, Mark A. Comparing Extant Story Classifiers. Results & New Directions. In: Proceedings of the 7th Workshop on Computational Models of Narrative (CMN 2016). eds. Ben Miller/Antonio Lieto/Remi Ronfard/Stephan G. Ware/Mark A. Finlayson. Dagstuhl 2016, 1–10. https://drops.dagstuhl.de/opus/volltexte/2016/6707/pdf/OASIcs-CMN-2016-6.pdf.Search in Google Scholar

Finlayson, Mark A.: Inferring Propp’s functions from semantically annotated text. In: Journal of American Folklore 129,511 (2016) 55–77. https://doi.org/10.5406/jamerfolk.129.511.0055.10.5406/jamerfolk.129.511.0055Search in Google Scholar

Frenzel, Elisabeth: Stoffe der Weltliteratur: Ein Lexikon dichtungsgeschichtlicher Längsschnitte. Stuttgart 1992.Search in Google Scholar

Hagedorn, Josh/Darányi, Sándor: Bearing a Bag-of-Tales: An Open Corpus of Annotated Folktales for Reproducible Research. In: Journal of Open Humanities Data 8,16 (2022). http://doi.org/10.5334/johd.78.10.5334/johd.78Search in Google Scholar

Ilyefalvi, Emese: The theoretical, methodological and technical issues of digital folklore databases and computational folkloristics. In: Acta Ethnographica Hungarica 63,1 (2018) 209–258. https://doi.org/10.1556/022.2018.63.1.11.10.1556/022.2018.63.1.11Search in Google Scholar

Karsdorp, Folgert: Retelling Stories: A Computational-Evolutionary Perspective. Radboud Universiteit 2016. https://repository.ubn.ru.nl/bitstream/handle/2066/162268/162268.pdf.Search in Google Scholar

Karsdorp, F./Fonteyn, L.: Cultural entrenchment of folktales is encoded in language. In: Palgrave Communications 5,25 (2019). https://doi.org/10.1057/s41599-019-0234-9.10.1057/s41599-019-0234-9Search in Google Scholar

Karsdorp, Folgert/van den Bosch, Antal: Identifying motifs in folktales using topic models. In: Proceedings of the 22 Annual Belgian-Dutch Conference on Machine Learning (2013) 41–49.Search in Google Scholar

Kestemont, Mike/Karsdorp, Folgert/de Bruijn, Elisabeth/Driscoll, Matthew/Kapitan, Katarzyna A./Ó Macháin, Pádraig/Sawyer, Daniel/Sleiderink, Remco/Chao, Anne: Forgotten books. The application of unseen species models to the survival of culture. In: Science 375,6582 (2022) 765–769. https://doi.org/10.1126/science.abl7655.10.1126/science.abl7655Search in Google Scholar

Lô, Gossa/Boer, Victor de/Aart, Chris J. van: Exploring West African Folk Narrative Texts Using Machine Learning. In: Information 11,5 (2020) 236. https://doi.org/10.3390/info11050236.10.3390/info11050236Search in Google Scholar

Meder, Theo: From a Dutch Folktale Database towards an International Folktale Database. In: Fabula 51,1–2 (2010) 6–22. https://doi.org/10.1515/FABL.2010.003.Search in Google Scholar

Meder, Theo/Karsdorp, Folgert/Nguyen, Dong/Theune, Mariët/Trieschnigg, Dolf/Muiser, Iwe (2016). Automatic Enrichment and Classification of Folktales in the Dutch Folktale Database. In: The Journal of American Folklore 129,511 (2016) 78–96. https://doi.org/10.5406/jamerfolk.129.511.0078.10.5406/jamerfolk.129.511.0078Search in Google Scholar

Nguyen, Dong/Trieschnigg, Dolf/Meder, Theo/Theune, Mariët: Automatic classification of folk narrative genres. In: Proceedings of KONVENS 2012. ed. Jeremy Jancsary (2012) 378–382.Search in Google Scholar

Nguyen, Dong/Trieschnigg, Dolf/Theune, Mariët: Folktale Classification Using Learning to Rank. In: Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science. ed. Pavel Serdyukov/Pavel Braslavski/Sergei O. Kuznetsov/Japp Kamps/Stefan Rüger/Eugene Agichtein/Ilya Segalovich/Emine Yilmaz. Heidelberg 2013, 195–206. https://doi.org/10.1007/978-3-642-36973-5_17.10.1007/978-3-642-36973-5_17Search in Google Scholar

Pajupuu, Hille/Altrov, Rene/Pajupuu, Jaan: Identifying polarity in different text types. In: Folklore. Electronic Journal of Folklore 64 (2016) 125–142. http://dx.doi.org/10.7592/FEJF2016.64.polarity. https://www.folklore.ee/folklore/vol64/polarity.pdf (January 11, 2023).10.7592/FEJF2016.64.polaritySearch in Google Scholar

Pompeu, Duarte Pinto/Martins, Bruno/Matos, David: Interpretable Deep Learning Methods for Classifying Folktales According to the Aarne-Thompson-Uther Scheme. Master’s Thesis, Instituto Superior Técnico, Universidade de Lisboa 2019.Search in Google Scholar

Propp, Vladimir: Morphology of the Folktale. New York 1958.Search in Google Scholar

Reiter, Nils/Frank, Anette/Hellwig, Oliver: An NLP-based cross-document approach to narrative structure discovery. In: Literary and Linguistic Computing 29,4 (2014) 583–605. https://doi.org/10.1093/llc/fqu055.10.1093/llc/fqu055Search in Google Scholar

Seigneuret, Jean-Charles (ed.): Dictionary of literary themes and motifs. New York 1988.Search in Google Scholar

Silva, Sara G. da/Tehrani, Jamshid J.: Comparative phylogenetic analyses uncover the ancient roots of Indo-European folktales. In: Royal Society Open Science 3,1 (2016) 1–11. https://doi.org/10.1098/rsos.150645.10.1098/rsos.150645Search in Google Scholar

Tangherlini, Timothy R.: Big folklore: A special issue on computational folkloristics. In: The Journal of American Folklore 129,511 (2016) 5–13. https://doi.org/10.5406/jamerfolk.129.511.0005.10.5406/jamerfolk.129.511.0005Search in Google Scholar

Tangherlini, Timothy R./Leonard, Peter: Trawling in the Sea of the Great Unread: Sub-corpus topic modeling and Humanities research. In: Poetics 41,6 (2013) 725–749. https://doi.org/10.1016/j.poetic.2013.08.002.10.1016/j.poetic.2013.08.002Search in Google Scholar

Tehrani, Jamshid J.: The phylogeny of Little Red Riding Hood. In: PLoS ONE 8,11 (2013) e78871. https://doi.org/10.1371/journal.pone.0078871.10.1371/journal.pone.0078871Search in Google Scholar

Tehrani, Jamshid J./Nguyen, Quan/Roos, Teemu: Oral fairy tale or literary fake? Investigating the origins of Little Red Riding Hood using phylogenetic network analysis. In: Digital Scholarship in the Humanities 31,3 (2016) 611–636. https://doi.org/10.1093/llc/fqv016.10.1093/llc/fqv016Search in Google Scholar

Thompson, Stith: Motif-index of folk-literature: A classification of narrative elements in folktales, ballads, myths, fables, mediaeval romances, example, fabliaux, jest-books and local legends. 2nd ed. Copenhagen 1951.Search in Google Scholar

Thompson, Stith: The Folktale. Berkeley 1977.Search in Google Scholar

Thuillard, Marc/d’Huy, Julien/Berezkin, Yuri Y./Le Quellec, Jean-Loïc: A Large-Scale Study of World Myths. In: Trames Journal of the Humanities and Social Sciences 22,4 (2018) 407–424. https://doi.org/10.3176/tr.2018.4.05.10.3176/tr.2018.4.05Search in Google Scholar

Uther, Hans-Jörg: The Types of International Folktales: A Classification and Bibliography, Based on the System of Antti Aarne and Stith Thompson. Helsinki 2004.Search in Google Scholar

Vapnik, Vladimir N.: An overview of statistical learning theory. In: IEEE Transactions on Neural Networks 10,5 (1999) 988–999. https://doi.org/10.1109/72.788640.10.1109/72.788640Search in Google Scholar

White, John D.: The Analysis of Music. Prentice-Hall 1976.Search in Google Scholar

Appendix: ATU tale type distribution of the AFT collection

The data can be accessed at doi.org/10.5281/zenodo.6575263

1. ANIMAL TALES (1–299)

46

Wild Animals 1–99

14

The Clever Fox (Other Animal) 1–69

1, 2, 15, 20C, 47A, 47B, 50, 57, 63, 66A, 68A

11

Other Wild Animals 70–99

75, 91, 92

3

Wild Animals and Domestic Animals 100–149

101, 103, 105, 112, 113A, 122E, 122F, 124, 130

9

Wild Animals and Humans 150–199

150, 154, 155, 156, 160, 173, 175, 178A

8

Domestic Animals 200–219

207C, 214A

2

Other Animals and Objects 220–299

 

Birds 220–249

225, 231, 237, 243A, 244, 247

6

Fish 250–253

Other animals and objects 275–299

275, 278, 278A, 280A, 285A, 295, 298

7

2. TALES OF MAGIC (300–749)

47

Supernatural Adversaries 300–399

303, 306, 310, 311, 312, 313, 325, 327, 328, 332, 333, 335, 361, 365, 366

15

Supernatural or Enchanted Wife (Husband) or Other Relative 400–459

6

Wife 400–424

402, 410

2

Husband 425–449

425C, 440, 441

3

Brother or Sister 450–459

451

1

Supernatural Tasks 460–499

480

1

Supernatural Helpers 500–559

500, 502, 503, 505, 510A, 510B, 545B, 555

8

Magic Objects 560–649

562, 563, 565, 570, 571B, 592, 613

7

Supernatural Power or Knowledge 650–699

650A, 670, 675

3

Other Tales of the Supernatural 700–749

700, 704, 706, 709, 720, 726, 737

7

3. RELIGIOUS TALES (750–849)

10

God Rewards and Punishes 750–779

750A, 756, 763, 777, 779, 779J*

6

The Truth Comes to Light 780–799

780, 782

2

Heaven 800–809

800

1

The Devil 810–826

 

Other Religious Tales 827–849

845

1

4. REALISTIC TALES (NOVELLE) (850–999)

16

The Man Marries the Princess 850–869

850

1

The Woman Marries the Prince 870–879

875

1

Proofs of Fidelity and Innocence 880–899

882, 888

2

The Obstinate Wife Learns to Obey 900–909

900

1

Good Precepts 910–919

910B

1

Clever Acts and Words 920–929

920E, 926

2

Tales of Fate 930–949

Robbers and Murderers 950–969

954, 955, 958E*

3

Other Realistic Tales 970–999

980, 980D, 981, 982, 990

5

5. TALES OF THE STUPID OGRE (GIANT, DEVIL) (1000–1199)

8

Labor Contract 1000–1029

Partnership between Man and Ogre 1030–1059

1030

1

Contest between Man and Ogre 1060–1114

Man Kills (Injures) Ogre 1115–1144

1137

1

Ogre Frightened by Man 1145–1154

Man Outwits the Devil 1155–1169

1157, 1161

2

Souls Saved from the Devil 1170–1199

1174, 1175, 1176, 1191

4

6. ANECDOTES AND JOKES (1200–1999)

45

Stories about a Fool 1200–1349

1215, 1287, 1288A, 1317, 1319, 1335A, 1342, 1343

8

Stories about Married Couples 1350–1439

1351, 1353, 1362, 1365, 1377, 1381, 1381D, 1383, 1408, 1415, 1422, 1423, 1430

13

The Foolish Wife and her Husband 1380–1404

The Foolish Husband and his Wife 1405–1429

The Foolish Couple 1430–1439

1451

1

Stories about a Woman 1440–1524

Looking for a Wife 1450–1474

Jokes about Old Maids 1475–1499

 

Other Stories about Women 1500–1524

 

Stories about a Man 1525–1724

 

The Clever Man 1525–1639

1540, 1548, 1558, 1562A, 1586, 1592, 1592B, 1620, 1626

9

Lucky Accidents 1640–1674

1641, 1641C, 1645, 1645B, 1655

5

The Stupid Man 1675–1724

1675, 1676, 1678, 1696

4

Jokes about Clergymen and Religious Figures 1725–1849

 

The Clergyman Is Tricked 1725–1774

1730, 1741

2

Clergyman and Sexton 1775–1799

1791

1

Other Jokes about Religious Figures 1800–1849

Anecdotes about Other Groups of People 1850–1874

Tall Tales 1875–1999

1889B, 1965

2

7. FORMULA TALES (2000–2399)

10

Cumulative Tales 2000–2100

2015, 2022, 2025, 2030, 2031C, 2032, 2034F, 2035, 2043

9

Catch Tales 2200–2299

2250

1

Other Formula Tales 2300–2399

 

Published Online: 2023-07-18
Published in Print: 2023-07-12

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fabula-2023-0005/html
Scroll to top button