Home Branching Processes Under Nonstandard Conditions
Article
Licensed
Unlicensed Requires Authentication

Branching Processes Under Nonstandard Conditions

  • Vladimir A. Vatutin ORCID logo EMAIL logo and Elena E. Dyakonova
Published/Copyright: April 28, 2024
Become an author with De Gruyter Brill

Abstract

We give a survey of some recent results describing some properties of branching processes under nonstandard conditions.

MSC 2020: 60J80

References

[1] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, Criticality for branching processes in random environment, Ann. Probab. 33 (2005), no. 2, 645–673. 10.1214/009117904000000928Search in Google Scholar

[2] K. B. Athreya, Coalescence in critical and subcritical Galton–Watson branching processes, J. Appl. Probab. 49 (2012), no. 3, 627–638. 10.1239/jap/1346955322Search in Google Scholar

[3] K. B. Athreya, Coalescence in the recent past in rapidly growing populations, Stochastic Process. Appl. 122 (2012), no. 11, 3757–3766. 10.1016/j.spa.2012.06.015Search in Google Scholar

[4] K. B. Athreya and P. E. Ney, Branching Processes, Grundlehren Math. Wiss. 196, Springer, New York, 1972. 10.1007/978-3-642-65371-1Search in Google Scholar

[5] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl. 27, Cambridge University, Cambridge, 1987. 10.1017/CBO9780511721434Search in Google Scholar

[6] L. Chaumont, Excursion normalisée, méandre et pont pour les processus de Lévy stables, Bull. Sci. Math. 121 (1997), no. 5, 377–403. Search in Google Scholar

[7] L. Chaumont and R. A. Doney, Invariance principles for local times at the maximum of random walks and Lévy processes, Ann. Probab. 38 (2010), no. 4, 1368–1389. 10.1214/09-AOP512Search in Google Scholar

[8] C. Dong, E. Dyakonova and V. Vatutin, Some functionals for random walks and critical branching processes in extreme random environment, preprint (2023), https://arxiv.org/abs/2311.10445. Search in Google Scholar

[9] R. Durrett, The genealogy of critical branching processes, Stochastic Process. Appl. 8 (1978/79), no. 1, 101–116. 10.1016/0304-4149(78)90071-6Search in Google Scholar

[10] K. Fleischmann and U. Prehn, Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen, Math. Nachr. 64 (1974), 357–362. 10.1002/mana.19740640123Search in Google Scholar

[11] K. Fleischmann and R. Siegmund-Schultze, The structure of reduced critical Galton–Watson processes, Math. Nachr. 79 (1977), 233–241. 10.1002/mana.19770790121Search in Google Scholar

[12] M. I. Goldstein, Critical age-dependent branching processes: Single and multitype, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 17 (1971), 74–88. 10.1007/BF00538476Search in Google Scholar

[13] S. C. Harris, S. G. G. Johnston and M. I. Roberts, The coalescent structure of continuous-time Galton–Watson trees, Ann. Appl. Probab. 30 (2020), no. 3, 1368–1414. 10.1214/19-AAP1532Search in Google Scholar

[14] G. Kersting and V. Vatutin, Discrete Time Branching Processes in Random Environment, Wiley, London, 2017. 10.1002/9781119452898Search in Google Scholar

[15] A. N. Lagerås and S. Sagitov, Reduced branching processes with very heavy tails, J. Appl. Probab. 45 (2008), no. 1, 190–200. 10.1239/jap/1208358961Search in Google Scholar

[16] V. Le, Coalescence times for the Bienaymé–Galton–Watson process, J. Appl. Probab. 51 (2014), no. 1, 209–218. 10.1239/jap/1395771424Search in Google Scholar

[17] M. Liu and V. Vatutin, Reduced critical branching processes for small populations, Theory Probab. Appl. 63 (2019), no. 4, 648–656. 10.1137/S0040585X97T989301Search in Google Scholar

[18] N. O’Connell, The genealogy of branching processes and the age of our most recent common ancestor, Adv. Appl. Probab. 27 (1995), no. 2, 418–442. 10.2307/1427834Search in Google Scholar

[19] S. M. Sagitov, Reduced multitype critical Bellman–Harris branching process, Theory Probab. Appl. 30 (1986), no. 4, 783–796. 10.1137/1130097Search in Google Scholar

[20] B. A. Sewast’yanov, Verzweigungsprozesse. Mathematische Lehrbucher und Monographien. II, Math. Monogr. 34, Akademie-Verlag, Berlin, 1974. Search in Google Scholar

[21] V. A. Vatutin, Discrete limit distributions of the number of particles in critical Bellman–Harris branching processes, Theory Probab. Appl. 22 (1977), no. 1, 146–152. 10.1137/1122014Search in Google Scholar

[22] V. A. Vatutin, The distance to the nearest common ancestor in Bellman–Harris branching processes, Math. Notes 25 (1979), no. 5, 378–382. 10.1007/BF01224843Search in Google Scholar

[23] V. A. Vatutin, A local limit theorem for critical Bellman–Harris branching processes, Proc. Steklov Inst. Math. 158 (1983), 9–31. Search in Google Scholar

[24] V. A. Vatutin, C. Dong and E. E. Dyakonova, Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment, Sb. Math. 214 (2023), no. 11, 1501–1533. 10.4213/sm9908eSearch in Google Scholar

[25] V. A. Vatutin and E. E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, Diskret. Mat. 34 (2022), no. 3, 20–33. 10.4213/dm1728Search in Google Scholar

[26] V. A. Vatutin and E. E. Dyakonova, Population size of a critical branching process evolving in an unfavorable environment, Theory Probab. Appl. 68 (2023), no. 3, 411–430. 10.1137/S0040585X97T991532Search in Google Scholar

[27] V. A. Vatutin, V. Khong and Y. Dzhi, Reduced critical Bellman–Harris branching processes for small populations, Discrete Math. Appl. 28 (2018), no. 5, 319–332. 10.1515/dma-2018-0028Search in Google Scholar

[28] V. M. Zolotarev, Mellin–Stieltjes transformations in probability theory, Theory Probab. Appl. 2 (1957), 433–460. 10.1137/1102031Search in Google Scholar

[29] A. M. Zubkov, Limit distributions of the distance to the nearest common ancestor, Theory Probab. Appl. 20 (1975), 602–612. 10.1137/1120065Search in Google Scholar

Received: 2024-04-18
Accepted: 2024-04-24
Published Online: 2024-04-28
Published in Print: 2024-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/eqc-2024-0013/html?lang=en
Scroll to top button