Abstract
The probability generating function (pgf)
Acknowledgements
We thank the referee for directing us to the interesting paper [13].
References
[1] S. Asmussen and H. Hering, Branching Processes, Progr. Probab. Stat. 3, Birkhäuser, Boston, 1983. 10.1007/978-1-4615-8155-0Search in Google Scholar
[2] K. B. Athreya and P. E. Ney, Branching Processes, Grundlehren Math. Wiss. 196, Springer, New Yorkg, 1972. 10.1007/978-3-642-65371-1Search in Google Scholar
[3] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl. 27, Cambridge University, Cambridge, 1987. 10.1017/CBO9780511721434Search in Google Scholar
[4] P. C. Consul and F. Famoye, Lagrangian Probability Distributions, Birkhäuser, Boston, 2006. Search in Google Scholar
[5] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996), no. 4, 329–359. 10.1007/BF02124750Search in Google Scholar
[6] N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology, Academic Press, New York, 1974. Search in Google Scholar
[7] T. E. Harris, The Theory of Branching Processes, Grundlehren Math. Wiss. 119, Springer, Berlin, 1963. 10.1007/978-3-642-51866-9Search in Google Scholar
[8] N. L. Johnson, A. W. Kemp and S. Kotz, Univariate Discrete Distributions, 3rd ed., Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2005. 10.1002/0471715816Search in Google Scholar
[9] P. Mayster and A. Tchorbadjieff, Extended Sibuya distribution in subcritical Markov branching processes, C. R. Acad. Bulgare Sci. 76 (2023), no. 4, 517–524. 10.7546/CRABS.2023.04.02Search in Google Scholar
[10] F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST Handbook of Mathematical Functions, Cambridge University, Cambridge, 2010. Search in Google Scholar
[11] A. G. Pakes, On the recognition and structure of probability generating functions, Classical and Modern Branching Processes (Minneapolis 1994), IMA Vol. Math. Appl. 84, Springer, New York (1997), 263–284. 10.1007/978-1-4612-1862-3_21Search in Google Scholar
[12] H. Rubin and D. Vere-Jones, Domains of attraction for the subcritical Galton–Watson branching process, J. Appl. Probab. 5 (1968), 216–219. 10.1017/S0021900200032411Search in Google Scholar
[13] S. Sagitov and A. Lindo, A special family of Galton–Watson processes with explosions, Branching Processes and Their Applications, Lect. Notes Stat. 219, Springer, Cham (2016), 237–254. 10.1007/978-3-319-31641-3_14Search in Google Scholar
[14] F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Monogr. Textb. Pure. Appl. Math. 259, Marcel Dekker, New York, 2004. 10.1201/9780203014127Search in Google Scholar
[15] A. Tchorbadjieff and P. Mayster, Geometric branching reproduction Markov processes, Mod. Stoch. Theory Appl. 7 (2020), no. 4, 357–378. 10.15559/20-VMSTA163Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- 80th Jubilee of Professor Nikolay Yanev
- My 55 Years in Stochastics
- On Subcritical Markov Branching Processes with a Specified Limiting Conditional Law
- Galton–Watson Theta-Processes in a Varying Environment
- Population Dependent Two-Sex Branching Process with Random Mating and Overlapping Generations
- Critical Multitype Branching Processes with Random Migration
- Branching Processes Under Nonstandard Conditions
Articles in the same Issue
- Frontmatter
- 80th Jubilee of Professor Nikolay Yanev
- My 55 Years in Stochastics
- On Subcritical Markov Branching Processes with a Specified Limiting Conditional Law
- Galton–Watson Theta-Processes in a Varying Environment
- Population Dependent Two-Sex Branching Process with Random Mating and Overlapping Generations
- Critical Multitype Branching Processes with Random Migration
- Branching Processes Under Nonstandard Conditions