Methodological proposal for constructing a classifier algorithm in clinical diagnostics of diseases using Bayesian methods
-
José Rafael Tovar Cuevas
, Andrés Camilo Méndez Alzate
, Diana María Caicedo Borrero
, Juan David Díaz Mutis
, Lizeth Fernanda Suárez Mensa
and Lyda Elena Osorio Amaya
Abstract
Objectives
To develop a methodological proposal to build clinical classifiers using information about signs and symptoms reported by the patient in initial the consultation and laboratory test results.
Methods
The proposed methodology considers procedures typical of the Bayesian paradigm of statistics as predictive probabilities and the sequential use of the Bayes formula. Additionally, some procedures belonging to classical statistics, such as Youden’s index and ROC curves, are applied. The method assumes two possible scenarios; when the patient only reports the signs and symptoms and the physician does not have access to information from laboratory tests. The other one is when the physician, besides the patient’s information, knows the blood test results. The method is illustrated using data from patients diagnosed with dengue.
Results
The performance of the proposed method depends of the set of signs and symptoms and the laboratory tests considered by the doctor as good indicators of presence of the sick in the individual.
Conclusions
The classifier can be used as a screening tool in scenarios where there is no extensive experience treating sick individuals, or economic and social conditions do not allow laboratory methods or gold standard procedures to complete the diagnosis.
Funding source: Universidad del Valle
Acknowledgments
We are grateful to all the scientific and administrative staff of the “Development and applied research to contribute to an effective and sustainable model of dengue intervention in Santander, Casanare, and Valle del Cauca” program and the Knowledge and Cooperation AEDES Network (Red Aedes) for their unconditional, timely, and professional support to conduct the study. We thank the managers and health personnel of all participating institutions Comfandi Torres, Alameda, and Calipso in Cali, and Clínica Piedecuesta, Hospital Local de Piedecuesta, and Hospital Regional de la Orinoquía in Yopal. We thank all research assistants Deici Narváez, Luisa Arias, Alejandra del Castillo, Juan Camilo Hernández, Javier Caicedo, Katherine Laurent, Lizeth Suárez, Liliana Soto, Katherin Quiñones, Gustavo Clemen, Diana Paredes, Liliana Cañón, Carlos Lucumí, Fernando Zamora, Tatiana Cortés, Leticia Rodríguez, Yadira Melo, and Mónica Consuegra for their hard work and contributions.
-
Research funding: This work was partially supported by Colombian Science, Technology and Innovation Fund of Sistema General de Regalías, Santander, Casanare, Valle del Cauca. BPIN 2013000100011, Universidad del Valle, and Caja de Compensación Familiar del Valle del Cauca COMFANDI. The funding organization played no role in the study desing; in the collection, anallysis, and interpretation of data; in the writing of the report; or in the decision to submit the report of publication.
-
Author contribution: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Ethical approval: The research related to human use has complied with all relevant national regulations, institutional policies, and in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors’ Insitutional Review Board or equivalent comitee (Comité Institucional de Revisión de Ética Humana, 144-016).
References
Box, G. E. P., and G. C. Tiao. 2011. Bayesian Inference in Statistical Analysis. Hoboken: Wiley and Son.Search in Google Scholar
Caicedo, D. M., A. C. Méndez, R. Tovar, and L. Osorio. 2019. “Desarrollo de Algoritmos Clínicos Para El Diagnóstico Del Dengue En Colombia.” Biomedica 39 (1): 170–85. https://doi.org/10.7705/biomedica.v39i2.3990.Search in Google Scholar
Caicedo, D. M., J. R. Tovar, A. Mendez, B. Parra, A. Bonelo, J. Celis, L. Villegas, C. Collazos, and L. Osorio. 2020. “Development and Performance of Dengue Diagnostic Clinical Algorithms in Colombia.” The American Journal of Tropical Medicine and Hygiene 102 (6): 1226–36. https://doi.org/10.4269/ajtmh.19-0722.Search in Google Scholar PubMed PubMed Central
Campuzano Maya, G. 2013. “Interpretación del hemograma automatizado: Claves para una mejor utilización de la prueba.” Medicina & Laboratorio 19 (1–2): 11–8.Search in Google Scholar
Clopper, C. J., and E. S. Pearson. 1934. “The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial.” Biometrika 26 (4): 404–13. https://doi.org/10.1093/biomet/26.4.404.Search in Google Scholar
Dawid, A. P. 1979. “Conditional Independence in Statistical Theory.” Journal of the Royal Statistical Society 41 (1): 1–31. https://doi.org/10.1111/j.2517-6161.1979.tb01052.x.Search in Google Scholar
deUllibarri, G., and P. Fernandez. 1998. “Curvas Roc.” Atención Primaria En La Red 5 (4): 229–35.Search in Google Scholar
Dìaz, F. A., R. A. Martínez, and L. A. Villar. 2006. “Criterios Clínicos Para Diagnosticar El Dengue En Los Primeros Días de Enfermedad.” Biomedica 26 (1): 22–30. https://doi.org/10.7705/biomedica.v26i1.1391.Search in Google Scholar
Fernández, P., and P. Díaz. 2003. “Pruebas Diagnósticas.” Cadernos de Atención Primaria 10 (1): 120–4.Search in Google Scholar
Fox, J., and G. Monette. 2002. An R and S-Plus Companion to Applied Regression. Thousand Oaks: SAGE Publications.Search in Google Scholar
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin, B. P. Carlin, and T. A. Louis. 2014. Bayesian Data Analysis Bayes and Empirical Bayes Methods for Data Analysis. Boca Raton: Chapman and Hall.10.1201/b16018Search in Google Scholar
Gunčar, G., M. Kukar, M. Notar, M. Brvar, and P. Černelč. 2018. “An Application of Machine Learning to Haematological Diagnosis.” Scientific Reports 8 (411): 154–96. https://doi.org/10.1038/s41598-017-18564-8.Search in Google Scholar PubMed PubMed Central
Hanley, J. A., and B. J. McNeil. 1982. “The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve.” Radiology 143 (1): 29–36. https://doi.org/10.1148/radiology.143.1.7063747.Search in Google Scholar PubMed
Khan, S. 2015. “Classification of Parkinson’s Disease Using Data Mining Techniques.” Journal of Parkinson’s Disease and Alzheimer’s Disease 2 (1): 1–4.10.13188/2376-922X.1000008Search in Google Scholar
Podgorelec, V., P. Kokol, I. Rozman, and B. Stiglic. 2002. “Decision Trees: An Overview and Their Use in Medicine.” Journal of Medical Systems 26 (5): 445–63. https://doi.org/10.1023/A:1016409317640.10.1023/A:1016409317640Search in Google Scholar
Press, S. J. 2002. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, 2nd ed. Hoboken: John Wiley and Son Inc.10.1002/9780470317105Search in Google Scholar
Rivero, A., L. M. Cruz, and J. Artiles. 2016. “Selección de Un Algoritmo Para La Clasificación de Nódulos Pulmonares Solitarios.” Revista Cubana de Informática Médica 8 (2): 166–77.Search in Google Scholar
Sarache, W., and E. Castaño. 2017. “Sistema Bayesiano Para La Predicción de La Diabetes.” Informacion Tecnologica 28 (6): 161–8. https://doi.org/10.4067/S0718-07642017000600017.Search in Google Scholar
Steyerberg, E. W., F. E. Harrell, G. J. J. M. Borsboom, R. Eijkemans, Y. Vergouwe, J. Dik, and F. Habbema. 2001. “Internal Validation of Predictive Models: Efficiency of Some Procedures for Logistic Regression Analysis.” Journal of Clinical Epidemiology 54 (8): 774–81. https://doi.org/10.1016/s0895-4356(01)00341-9.Search in Google Scholar
Tovar, J. R. 2012. “Eliciting Beta Prior Distributions for Binomial Sampling.” Revista Brasileira de Biometria 30 (1): 159–72.Search in Google Scholar
Tuan, N. M., H. T. Nhan, N. V. V. Chau, N. T. Hung, H. M. Tuan, T. V. Tram, N. L. D. Ha, P. Loi, H. K. Quang, D. T. H. Kien, S. Hubbard, T. N. B. Chau, B. Wills, M. Wolbers, and C. P. Simmons. 2015. “Sensitivity and Specificity of a Novel Classifier for the Early Diagnosis of Dengue.” PLoS Neglected Tropical Diseases 9 (4). https://doi.org/10.1371/journal.pntd.0003638.10.1371/journal.pntd.0003638Search in Google Scholar PubMed PubMed Central
World Health Organization. 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: WHO.Search in Google Scholar
Yamamoto, Y., A. Saito, A. Tateishi, H. Shimojo, H. Kanno, S. Tsuchiya, K. Ito, E. Cosatto, H. P. Graf, R. Moraleda, R. Eils, and N. Grabe. 2017. “Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach.” Scientific Reports 7 (46732). https://doi.org/10.1038/srep46732.10.1038/srep46732Search in Google Scholar PubMed PubMed Central
Youden, W. J. 1950. “Index for rating diagnostic tests.” Cancer 3 (1): 32–5. https://doi.org/10.1002/1097-0142.Search in Google Scholar
Zhu, M., and A. Y. Lu. 2004. “The Counter-intuitive Non-informative Prior for the Bernoulli Family.” Journal of Statistics Education 12 (2). https://doi.org/10.1080/10691898.2004.11910734.10.1080/10691898.2004.11910734Search in Google Scholar
Zou, K. H., A. J. O’Malley, and L. Mauri. 2007. “Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models.” Circulation 115 (5): 654–7. https://doi.org/10.1161/CIRCULATIONAHA.105.594929.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research Articles
- Selection bias and multiple inclusion criteria in observational studies
- Orthostatic intolerance and neurocognitive impairment in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
- Methodological proposal for constructing a classifier algorithm in clinical diagnostics of diseases using Bayesian methods
- Reviewer Acknowledgment
- Reviewer Acknowledgment
Articles in the same Issue
- Research Articles
- Selection bias and multiple inclusion criteria in observational studies
- Orthostatic intolerance and neurocognitive impairment in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
- Methodological proposal for constructing a classifier algorithm in clinical diagnostics of diseases using Bayesian methods
- Reviewer Acknowledgment
- Reviewer Acknowledgment