Home Role of CYP4F2, CYP2C19, and CYP1A2 polymorphisms on acenocoumarol pharmacogenomic algorithm accuracy improvement in the Greek population: need for sub-phenotype analysis
Article
Licensed
Unlicensed Requires Authentication

Role of CYP4F2, CYP2C19, and CYP1A2 polymorphisms on acenocoumarol pharmacogenomic algorithm accuracy improvement in the Greek population: need for sub-phenotype analysis

  • Georgia Ragia EMAIL logo , Ioanna-Maria Karantza , Eleni Kelli-Kota , Vana Kolovou , Genovefa Kolovou , Stavros Konstantinides , Efstratios Maltezos , Anna Tavridou , Dimitrios Tziakas , Anke H. Maitland-van der Zee and Vangelis G. Manolopoulos
Published/Copyright: December 19, 2017

Abstract

Background:

We have earlier developed a pharmacogenomic algorithm for acenocoumarol dose prediction in Greek patients that included CYP2C9/VKORC1 genetic information. This study aims at analyzing the potential effect of CYP4F2, CYP2C19, and CYP1A2 gene polymorphisms on acenocoumarol dose requirements and at further improving the Greek-specific pharmacogenomic algorithm.

Methods:

A total of 205 Greek patients taking acenocoumarol (140 who reached and 65 who did not reach stable dose), participants of acenocoumarol EU-PACT trial, were included in the study. CYP4F2, CYP2C19, and CYP1A2 polymorphisms were genotyped by use of the PCR-RFLP method. All patients were previously genotyped for CYP2C9/VKORC1 polymorphisms.

Results:

In the pooled sample, CYP4F2, CYP2C19, and CYP1A2 polymorphisms do not affect independently acenocoumarol dose requirements. For CYP4F2, significant effects were found on patients’ ability to reach stable dose and on acenocoumarol dose requirements when CYP2C9/VKORC1 sub-phenotypes were analyzed. Specifically, when the patients were stratified according to their CYP2C9/VKORC1 functional bins, in sensitive responders, CYP4F2*3 allele carriers (CYP4F2 *1/*3 and *3/*3 genotypes) were more frequent in the patient group who reached stable dose (p=0.049). Additionally, in CYP2C9 intermediate metabolizers (IMs), after adjusting for age, weight, and VKORC1 genotypes, CYP4F2 genotypes were significantly associated with acenocoumarol stable dose (β: 0.07; 95% CI: 0.006–0.134; p=0.033).

Conclusions:

CYP4F2 gene shows a prominent weak association with acenocoumarol dose requirements. Sub-phenotype analysis is potentially important in determining additional gene polymorphisms that are associated with acenocoumarol dose requirements.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the European Commission Seventh Framework Program (10.13039/100011272, HEALTH-F2-2009-223062).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: Georgia Ragia is an employee at DNALEX S.A. Genovefa Kolovou has given talks, attended conferences and participated in trials sponsored by MSD, Amgen, Sanofi, Angelini, Aegerion. Anke H. Maitland-van der Zee received an unrestricted research grant from GSK and participated in an advisory board for Astra Zeneca.

References

1. Pirmohamed M, Kamali F, Daly AK, Wadelius M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol Sci 2015;36:153–63.10.1016/j.tips.2015.01.003Search in Google Scholar PubMed

2. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics 2010;11:493–6.10.2217/pgs.10.31Search in Google Scholar PubMed

3. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 2008;358:999–1008.10.1056/NEJMoa0708078Search in Google Scholar PubMed PubMed Central

4. James AH, Britt RP, Raskino CL, Thompson SG. Factors affecting the maintenance dose of warfarin. J Clin Pathol 1992;45:704–6.10.1136/jcp.45.8.704Search in Google Scholar PubMed PubMed Central

5. Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 2005;106:135–40.10.1182/blood-2005-01-0341Search in Google Scholar PubMed

6. Verhoef TI, Redekop WK, Daly AK, van Schie RM, de Boer A, Maitland-van der Zee AH. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol 2013;77:626–41.10.1111/bcp.12220Search in Google Scholar PubMed PubMed Central

7. Coumadin (warfarin sodium) (package insert). Bristol-Myers Squibb, Princeton, NJ, USA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009218s017lbl.pdf. Accessed: 01 Dec 2017.Search in Google Scholar

8. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V, et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med 2013;369:2304–12.10.1056/NEJMoa1311388Search in Google Scholar PubMed

9. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013;369:2294–303.10.1056/NEJMoa1311386Search in Google Scholar PubMed

10. Ragia G, Kolovou V, Kolovou G, Konstantinides S, Maltezos E, Tavridou A, et al. A novel acenocoumarol pharmacogenomic dosing algorithm for the Greek population of EU-PACT trial. Pharmacogenomics 2017;18:23–34.10.2217/pgs-2016-0126Search in Google Scholar PubMed

11. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008;111:4106–12.10.1182/blood-2007-11-122010Search in Google Scholar PubMed PubMed Central

12. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009;5:e1000433.10.1371/journal.pgen.1000433Search in Google Scholar PubMed PubMed Central

13. Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A, et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 2009;18:3758–68.10.1093/hmg/ddp309Search in Google Scholar PubMed

14. Wypasek E, Branicka A, Awsiuk M, Sadowski J, Undas A. Genetic determinants of acenocoumarol and warfarin maintenance dose requirements in Slavic population: a potential role of CYP4F2 and GGCX polymorphisms. Thromb Res 2014;134:604–9.10.1016/j.thromres.2014.06.022Search in Google Scholar PubMed

15. Tong HY, Davila-Fajardo CL, Borobia AM, Martinez-Gonzalez LJ, Lubomirov R, Perea Leon LM, et al. A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a mixed Spanish population. PLoS One 2016;11:e0150456.10.1371/journal.pone.0150456Search in Google Scholar PubMed PubMed Central

16. Cerezo-Manchado JJ, Roldan V, Rosafalco M, Anton AI, Arroyo AB, Garcia-Barbera N, et al. Effect of VKORC1, CYP2C9 and CYP4F2 genetic variants in early outcomes during acenocoumarol treatment. Pharmacogenomics 2014;15:987–96.10.2217/pgs.13.232Search in Google Scholar PubMed

17. Nahar R, Saxena R, Deb R, Parakh R, Shad S, Sethi PK, et al. CYP2C9, VKORC1, CYP4F2, ABCB1 and F5 variants: influence on quality of long-term anticoagulation. Pharmacol Rep 2014;66:243–9.10.1016/j.pharep.2013.09.006Search in Google Scholar PubMed

18. Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000;28:1284–90.Search in Google Scholar PubMed

19. Jimenez-Varo E, Canadas-Garre M, Gutierrez-Pimentel MJ, Calleja-Hernandez MA. Prediction of stable acenocoumarol dose by a pharmacogenetic algorithm. Pharmacogenet Genomics 2014;24:501–13.10.1097/FPC.0000000000000082Search in Google Scholar PubMed

20. Saraeva RB, Paskaleva ID, Doncheva E, Eap CB, Ganev VS. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther 2007;32:641–9.10.1111/j.1365-2710.2007.00870.xSearch in Google Scholar PubMed

21. Nastasi-Catanese JA, Padilla-Gutierrez JR, Valle Y, Ortega-Gutierrez F, Gallegos-Arreola MP, Figuera LE. Genetic contribution of CYP2C9, CYP2C19, and APOE variants in acenocoumarol response. Genet Mol Res 2013;12:4413–21.10.4238/2013.October.10.7Search in Google Scholar PubMed

22. van Schie RM, Wadelius MI, Kamali F, Daly AK, Manolopoulos VG, de Boer A, et al. Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 2009;10:1687–95.10.2217/pgs.09.125Search in Google Scholar PubMed

23. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 2007;21:419–26.10.1111/j.1472-8206.2007.00510.xSearch in Google Scholar PubMed

24. Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG. Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 2009;10:43–9.10.2217/14622416.10.1.43Search in Google Scholar PubMed

25. Ragia G, Giannakopoulou E, Karaglani M, Karantza IM, Tavridou A, Manolopoulos VG. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance. Drug Metabol Drug Interact 2014;29:235–48.10.1515/dmdi-2014-0006Search in Google Scholar PubMed

26. Howard R, Leathart JB, French DJ, Krishan E, Kohnke H, Wadelius M, et al. Genotyping for CYP2C9 and VKORC1 alleles by a novel point of care assay with HyBeacon(R) probes. Clin Chim Acta 2011;412:2063–9.10.1016/j.cca.2011.07.013Search in Google Scholar PubMed

27. Weir B. Disequilibrium. MA, USA: Sinaur Associates, 1996.Search in Google Scholar

28. Ragia G, Marousi S, Ellul J, Manolopoulos VG, Tavridou A. Association of functional VKORC1 promoter polymorphism with occurrence and clinical aspects of ischemic stroke in a Greek population. Dis Markers 2013;35:641–6.10.1155/2013/769574Search in Google Scholar PubMed PubMed Central

29. Tavridou A, Petridis I, Vasileiadis M, Ragia G, Heliopoulos I, Vargemezis V, et al. Association of VKORC1 -1639 G>A polymorphism with carotid intima-media thickness in type 2 diabetes mellitus. Diabetes Res Clin Pract 2011;94:236–41.10.1016/j.diabres.2011.06.021Search in Google Scholar PubMed

30. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 2010;11:781–91.10.2217/pgs.10.49Search in Google Scholar PubMed PubMed Central

31. Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, Vicente V, et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 2009;113:4977–9.10.1182/blood-2008-09-176222Search in Google Scholar PubMed

32. Perez-Andreu V, Roldan V, Lopez-Fernandez MF, Anton AI, Alberca I, Corral J, et al. Pharmacogenetics of acenocoumarol in patients with extreme dose requirements. J Thromb Haemost 2010;8:1012–7.10.1111/j.1538-7836.2010.03800.xSearch in Google Scholar PubMed

33. Rathore SS, Agarwal SK, Pande S, Singh SK, Mittal T, Mittal B. Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in north Indians. PLoS One 2012;7:e37844.10.1371/journal.pone.0037844Search in Google Scholar PubMed PubMed Central

34. Borobia AM, Lubomirov R, Ramirez E, Lorenzo A, Campos A, Munoz-Romo R, et al. An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in Spanish patients with thromboembolic disease. PLoS One 2012;7:e41360.10.1371/journal.pone.0041360Search in Google Scholar PubMed PubMed Central

35. Cerezo-Manchado JJ, Rosafalco M, Anton AI, Perez-Andreu V, Garcia-Barbera N, Martinez AB, et al. Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb Haemost 2013;109:146–53.10.1160/TH12-08-0631Search in Google Scholar PubMed

36. Krishna Kumar D, Shewade DG, Loriot MA, Beaune P, Sai Chandran BV, Balachander J, et al. An acenocoumarol dosing algorithm exploiting clinical and genetic factors in South Indian (Dravidian) population. Eur J Clin Pharmacol 2015;71:173–81.10.1007/s00228-014-1791-xSearch in Google Scholar PubMed

37. Jimenez-Varo E, Canadas-Garre M, Henriques CI, Pinheiro AM, Gutierrez-Pimentel MJ, Calleja-Hernandez MA. Pharmacogenetics role in the safety of acenocoumarol therapy. Thromb Haemost 2014;112:522–36.10.1160/TH13-11-0941Search in Google Scholar PubMed

38. Smires FZ, Moreau C, Habbal R, Siguret V, Fadili S, Golmard JL, et al. Influence of genetics and non-genetic factors on acenocoumarol maintenance dose requirement in Moroccan patients. J Clin Pharm Ther 2012;37:594–8.10.1111/j.1365-2710.2012.01340.xSearch in Google Scholar PubMed

39. van Schie RM, Aoussar A, van der Meer FJ, de Boer A, Maitland-van der Zee AH. Evaluation of the effects of single-nucleotide polymorphisms in CYP3A4 and CYP4F2 on stable phenprocoumon and acenocoumarol maintenance doses. J Thromb Haemost 2013;11:1200–3.10.1111/jth.12195Search in Google Scholar PubMed

40. Sychev DA, Rozhkov AV, Kazakov RE, Ananichuk AV. The impact of CYP4F2, ABCB1, and GGCX polymorphisms on bleeding episodes associated with acenocoumarol in Russian patients with atrial fibrillation. Drug Metab Pers Ther 2016;31:173–8.10.1515/dmpt-2016-0014Search in Google Scholar PubMed

41. Cerezo-Manchado JJ, Roldan V, Corral J, Rosafalco M, Anton AI, Padilla J, et al. Genotype-guided therapy improves initial acenocoumarol dosing. Results from a prospective randomised study. Thromb Haemost 2016;115:117–25.10.1160/TH14-09-0814Search in Google Scholar PubMed

42. Wijnen PA, Linssen CF, Haenen GR, Bekers O, Drent M. Variant VKORC1 and CYP2C9 alleles in patients with diffuse alveolar hemorrhage caused by oral anticoagulants. Mol Diagn Ther 2010;14:23–30.10.1007/BF03256350Search in Google Scholar PubMed

Received: 2017-11-7
Accepted: 2017-11-15
Published Online: 2017-12-19
Published in Print: 2017-12-20

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dmpt-2017-0034/html
Scroll to top button