Abstract
We study the graphs of transitions between states of nonautonomous automata that provide, with independent equiprobable input signs, an equiprobable distribution on the set of all states in the minimum possible number of cycles, as is the case of the de Bruijn graphs corresponding to shift registers. It is proved that in the case of a binary input alphabet, there are at least 12r−33 pairwise nonisomorphic directed graphs with 2r vertices that have this property. All graphs of this type with 8 and 9 vertices are found.
Note: Originally published in Diskretnaya Matematika (2020) 32,№4, 52–88 (in Russian).
References
[1] De Bruijn N. G., “A combinatorial problem”, Proc. Sect. Sci. Koninkl. Nederl. Akad. Wetensch. Amsterdam, 49:7 (1946), 758-764.Search in Google Scholar
[2] Hall M., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967, x+310 pp.Search in Google Scholar
[3] Good I. J., “Normal recurring decimals”, J. London Math. Soc., 21:3 (1946), 167-169.10.1112/jlms/s1-21.3.167Search in Google Scholar
[4] Fredricksen H., “A survey of full length nonlinear shift register cycle algorithms”, SIAM Rev., 24:2 (1982), 195-221.10.1137/1024041Search in Google Scholar
[5] Kratko M. I., Strok V. V., “De Bruijn sequences with constraints”, Voprosy kibernetiki. Kombinatornyy analiz i teoriya grafov, 1980, 80-84 (in Russian).Search in Google Scholar
[6] Sherisheva E. V., “On the number of finite automata stabilized at a fixed state by a constant input”, Discrete Math. Appl., 4:5 (1994), 473-478.10.1515/dma.1994.4.5.473Search in Google Scholar
[7] Erokhin A. V., Malyshev F. M., Trishin A. E., “Multidimensional linear method and diffusion characteristics of linear medium of ciphering transform”, Mat. Vopr. Kriptogr., 8:4 (2017), 29-62 (in Russian).10.4213/mvk235Search in Google Scholar
[8] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp.10.21236/AD0705364Search in Google Scholar
[9] Fisher P., Aljohani N., Baek J., “Generation of finite inductive, pseudo random, binary sequences”, J. Inf. Process. Syst., 13:6 (2017), 1554-1574.Search in Google Scholar
[10] Wu J., Jia R., Li Q., “g-circulant solutions to the (0, 1)-matrix equation Am = Jn”, Linear Algebra Appl., 345:1 (2002), 195-224.10.1016/S0024-3795(01)00491-8Search in Google Scholar
[11] Hoffman A. J., “Research problem 2-11”, J. Combin. Theory, 2:3 (1967), 393.10.1016/S0021-9800(67)80037-1Search in Google Scholar
[12] Trefois M., Van Dooren P., Delvenne J.-Ch., “Binary factorizations of the matrix of all ones”, Linear Alg. Appl., 468 (2015), 63-79.10.1016/j.laa.2014.01.011Search in Google Scholar
[13] Ma S. L., Waterhouse W. C., “The g-circulant solutions of Am = λj”, Linear Algebra Appl., 85 (1987), 211-220.10.1016/0024-3795(87)90218-7Search in Google Scholar
[14] King F., Wang K., “On the g-circulant solutions to the matrix equation Am = λj”, J. Combin. Theory. Ser. A, 38:2 (1985), 182-186.10.1016/0097-3165(85)90067-6Search in Google Scholar
[15] Wang K., “On the g-circulant solutions to the matrix equation Am = λj”, J. Combin. Theory. Ser. A, 33:3 (1982), 287-296.10.1016/0097-3165(82)90041-3Search in Google Scholar
[16] Wang T., Wang J., “On some solutions to the matrix equation Am = j”, J. Dalian Univ. Technology, 10:6 (1990), 621-624.Search in Google Scholar
[17] Du D. Z., Hwang F. K., “Generalized de Bruijn digraphs”, Networks, 18:1 (1988), 27-38.10.1002/net.3230180105Search in Google Scholar
[18] Esfahanian A. H., Hakimi S. L., “Faul-tolerant routing in de Bruin communication networks”, IEEE Trans. Comput., C-34:9 (1985), 777-788.10.1109/TC.1985.1676633Search in Google Scholar
[19] Pradhan D. K., “Fault-tolerant multiprocessor and VSLI-based systems communication architecture”, Fault Tolerant Computing Theory and Techniques, II, Prentice-Hall, Englewood Cliffs, NJ, 1986, 467-576.10.21236/ADA183344Search in Google Scholar
[20] Grodzki Z., Wronski A., “Generalized de Bruijn multigraphs of rank
[21] Malyshev F. M., Tarakanov V. E., “Generalized de Bruijn graphs”, Math. Notes, 62:4 (1997), 449-456.10.1007/BF02358978Search in Google Scholar
[22] Tarakanov V. E., “On the automorphism groups of generalized de Bruijn graphs”, Tr. Diskr. Mat., 5, M.: FIZMATLIT, 235-240 (in Russian).Search in Google Scholar
[23] Malyshev F. M., “Infinite series of simple generalized de Bruijn graphs”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya (Mater. XV Mezhdunar. konf., Tula, TGPU im. L. N. Tolstogo), 2018, 187-190 (in Russian).Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Single diagnostic tests for inversion faults of gates in circuits over arbitrary bases
- Generalized de Bruijn graphs
- A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic
- Linear recurrent relations, power series distributions, and generalized allocation scheme
- Variance of the number of cycles of random A-permutation
- Multi-dimensional Kronecker sequences with a small number of gap lengths
Articles in the same Issue
- Frontmatter
- Single diagnostic tests for inversion faults of gates in circuits over arbitrary bases
- Generalized de Bruijn graphs
- A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic
- Linear recurrent relations, power series distributions, and generalized allocation scheme
- Variance of the number of cycles of random A-permutation
- Multi-dimensional Kronecker sequences with a small number of gap lengths