Abstract
The limited deficit method is described, which allows constructing new orthomorphisms (almost orthomorphisms) of groups with the use of those already known. A class of transformations is described under which the set of all orthomorphisms (almost orthomorphisms) remains invariant. It is conjectured that the set of all orthomorphisms (almost orthomorphisms) is generated by transformations implemented by the limited deficit method. This conjecture is verified for all Abelian groups of order at most 12. The spectral-linear method and the spectral-differential method of design of permutations over the additive group of the field 𝔽2m (m = 4, …, 8) are used to construct orthomorphisms with sufficiently high values of the most important cryptographic parameters.
Originally published in Diskretnaya Matematika (2019) 31,№3, 58–77 (in Russian).
References
[1] Bugrov A.D., “Piecewise affine substitutions of finite fields”, Prikladnaya diskretnaya matematika, 4:30 (2015), 5-23 (in Russian).10.17223/20710410/30/1Search in Google Scholar
[2] Gluhov M. M., “On a method of construction of orthogonal quasigroup systems by means of groups”, Matematicheskie vo-prosy kriptografii, 2:4 (2011), 5-24 (in Russian).10.4213/mvk40Search in Google Scholar
[3] Gluhov M. M., “On applications of quasigroups in cryptography”, Prikladnaya diskretnaya matematika, 2:2 (2008), 28-32 (in Russian).10.17223/20710410/2/7Search in Google Scholar
[4] GOST R 34.11-2012, Information technology. Cryptographic information security. Hash function, M.: Standartinform, 2012 (in Russian).Search in Google Scholar
[5] GOST R 34.12-2015, Information technology. Cryptographic information security. Block cipher, M.: Standartinform, 2015 (in Russian).Search in Google Scholar
[6] Zubov A.Yu, Mathematics of authentication code, M.: Gelios ARV, 2007 (in Russian), 480 pp.Search in Google Scholar
[7] Menyachikhin A. V., “Spectral-linear and spectral-differential methods for constructing S-boxes with close to optimal values of cryptographic parameters”, Matematicheskie voprosy kriptografii, 8:2 (2017), 97-116 (in Russian).10.4213/mvk227Search in Google Scholar
[8] Menyachikhin A. V., “A method for constructing the substitution nodes, using the values of linear and difference spectra, and a device that implements it”, Patent for an invention № 2633132 RF, 29 (2017) (in Russian).Search in Google Scholar
[9] Menyachikhin A. V., “Orthomorphisms of Abelian groups with minimum possible pairwise distances”, Discrete Math. Appl., 30:3 (2020), 177-186.10.1515/dma-2020-0017Search in Google Scholar
[10] Menyachikhin A. V., “The device for orthomorphism constructing, using pair differences”, Patent for an invention № 2632119 RF, 28 (2017) (in Russian).Search in Google Scholar
[11] Sachkov V. N., “Deficiencies of finite group permutations”, Trudy po diskretnoy matematike, 7 (20 03), 156-175 (in Russian).Search in Google Scholar
[12] Sachkov V. N., Combinatorial analysis course, M.-Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika», 2013 (in Russian), 336 pp.Search in Google Scholar
[13] Sachkov V. N., “Difference specification of substitutions and partitions in a residue ring”, Matematicheskie voprosy kriptografii, 5:1 (2014), 127-150 (in Russian).10.4213/mvk110Search in Google Scholar
[14] Sachkov V. N., “Markov chains of iterative transformations systems”, Trudy po diskretnoy matematike, 6 (2002), 165-183 (in Russian).Search in Google Scholar
[15] Trishin A. E., “On the exponent of nonlinearity of piecewise-linear substitutions of the additive group of the field 𝔽2n”, Prikladnaya diskretnaya matematika, 4:30 (2015), 32-42 (in Russian).10.17223/20710410/30/3Search in Google Scholar
[16] Trishin A. E., “A method for constructing orthogonal Latin squares based on permutation binomials of a finite fields”, Obozr. prikl. ipromysh. matem., 15:4 (2008) (in Russian).Search in Google Scholar
[17] Tuzhilin M. E., “Latin squares and their applications in cryptography”, Prikladnaya diskretnaya matematika. Prilozhenie, 3:17 (2012), 47-52 (in Russian).10.17223/20710410/17/6Search in Google Scholar
[18] Cheremushkin A. V., Cryptographic protocols. Basic properties and vulnerabilities, M.: Izd. Tsentr «Akademiya», 2009 (in Russian), 272 pp.Search in Google Scholar
[19] Buchheim C., Cameron P.J., Wu T., “On the subgroup distance problem”, Discrete Mathematics, 309:4 (2009), 962-968.10.1016/j.disc.2008.01.036Search in Google Scholar
[20] Daemen J., “Limitations of the Even-Mansour construction”, ASIACRYPT, Lect. Notes Comput. Sci., 739, 1991, 495-498.10.1007/3-540-57332-1_46Search in Google Scholar
[21] Dai Z., Golomb S., Gong G., “Generating all linear orthomorphisms without repetition”, Discrete Mathematics, 205 (1999), 47-55.10.1016/S0012-365X(99)00035-7Search in Google Scholar
[22] Denes J., Keedwell A. D., Latin squares and their applications, Academiai Kiado, Budapest, 2015, 545 pp.Search in Google Scholar
[23] Dinur I., Dunkelman O., Keller N., Shamir A., “Key recovery attacks on 3-round Even-Mansour, 8-step LED-128, and full AES”, http://eprint.iacr.org/2013/391, 2013.10.1007/978-3-642-42033-7_18Search in Google Scholar
[24] Evans A., Orthomorphisms graphs and groups, Springer-Verlag, Berlin, 1992, 114 pp.10.1007/BFb0092363Search in Google Scholar
[25] Evans A., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups and related systems, 23 (2015), 5-30.Search in Google Scholar
[26] Even E., Mansour Y., “A construction of a cipher from a single pseudorandom permutation”, ASIACRYPT, Lect. Notes Comput. Sci., 739, 1991, 210-224.10.1007/3-540-57332-1_17Search in Google Scholar
[27] Gilboa S., Gueron S., “Balanced permutations Even-Mansour ciphers”, Cryptography, 1:1 (2017), 1-17.10.3390/cryptography1010002Search in Google Scholar
[28] Gligoroski D., Odegard R.S., Mihova M. et al., “Cryptographic hash function Edon-R”, Proc. 1stInt. Workshop Secur. Commun. Netw., 2009, 1-9.Search in Google Scholar
[29] Hall M., “A combinatorial problem on Abelian groups”, Proc. Amer. Math. Soc., 3:4 (1952), 584-587.10.1090/S0002-9939-1952-0050579-7Search in Google Scholar
[30] Han H., Xiong Y., Zhu S., “The linear orthomorphisms on the ring ℤn”, Res. J. Appl. Sci., Engineer. and Technol., 5:5 (2013), 1848-1852.10.19026/rjaset.5.4948Search in Google Scholar
[31] Han H. Xu X., “The evolutionary generation of orthomorphisms in the finite field 𝔽28 ”, Res. J. Appl. Sci., Engineer. and Technol., 4:21 (2012), 4458-4462.Search in Google Scholar
[32] Johnson D.M., Dulmage A.L., Mendelsohn N.S., “Orthomorphisms of groups and orthogonal Latin squares, I”, Canad. J. Math., 13 (1961), 356-372.10.4153/CJM-1961-031-7Search in Google Scholar
[33] Leander G., Poscmann A., “On the classification of 4 bit s-boxes”, Lect. Notes Comput. Sci., 4547, 2007, 159-176.10.1007/978-3-540-73074-3_13Search in Google Scholar
[34] Lu Z., Lai X., “A new method for construction of orthomorphic permutations with the highest degree”, Adv. Comput. Sci. Res., 54, Atlantic Press, 2016, 579-584.Search in Google Scholar
[35] Mann H.B., “On orthogonal Latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249-257.10.1090/S0002-9904-1944-08127-5Search in Google Scholar
[36] Niederreiter H., Robinson K., “Bol loops of order pq”, Math. Proc. Cambridge Philosoph. Soc., 89:2 (1981), 241-256.10.1017/S030500410005814XSearch in Google Scholar
[37] Niederreiter H., Robinson K., “Complete mappings of finite fields”, J. Austral. Math. Soc. Ser., 1982, 197-212.10.1017/S1446788700018346Search in Google Scholar
[38] Nikolic I., Wang L., Wu S., “Cryptoanalysis of round-reduce LED”, FSE, Lect. Notes Comput. Sci., 8424, 2013, 112-130.10.1007/978-3-662-43933-3_7Search in Google Scholar
[39] Paige L.J., “A note on finite Abelian groups”, Bull. Amer. Math. Soc., 53 (1947), 590-593.10.1090/S0002-9904-1947-08842-XSearch in Google Scholar
[40] Tong Y., Zhang H., Han H., “Using Evolutionary Computation in construction of orthomorphism”, Proc. Int. Conf. Multimed. Inf. Netw. and Secur., 2009, 478-481.10.1109/MINES.2009.160Search in Google Scholar
[41] Tu Z., Zeng X., Hu L., “Several classes of complete permutation polynomials”, Finite fields and applications, 25 (2014), 182-193.10.1016/j.ffa.2013.09.007Search in Google Scholar
[42] Yuan Y., Tong Y., Zhang H., “Complete mapping polynomials over finite field 𝔽16”, Arithmetic of Finite Fields, Lect. Notes Comput. Sci., 4547, 2007, 147-158.10.1007/978-3-540-73074-3_12Search in Google Scholar
7 Appendix
g ∈ Orth( 𝔽24) | δg | |L(g, δg)| | pg | |D(g, pg)| | λg | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 8 | 4 | 9 | f | a | 7 | 2 | 0 | e | 6 | 5 | 1 | d | c | b | 30 | 15 | 3 | ||
e | 4 | 0 | c | 3 | d | f | 7 | 5 | 2 | 9 | a | 6 | 1 | 8 | b | 36 | 24 | 2 |
g ∈ Orth( 𝔽25) | δg | |L(g, δg)| | pg | |D(g, pg)| | λg | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17 | 1 | 11 | 4 | 1a | 15 | 8 | 3 | 2 | 10 | 1c | 0 | 19 | 16 | d | 9 | 68 | 57 | 3 | ||
12 | 1e | 1b | f | e | 18 | 13 | 1f | 14 | b | 5 | 6 | 1d | c | a | 7 | |||||
1f | 11 | 1b | 17 | 3 | 7 | 10 | 6 | 16 | d | 1d | b | 1 | 2 | 4 | 15 | 72 | 63 | 3 | ||
8 | 14 | f | 1a | 1c | 1e | a | 5 | 9 | c | 19 | 0 | 12 | e | 18 | 13 | |||||
8 | 6 | 1 | 1e | 11 | 12 | 1f | 1d | c | 1b | f | 7 | 10 | 19 | 3 | 9 | 74 | 66 | 3 | ||
b | 0 | a | 1a | 16 | 5 | 17 | 18 | e | 13 | 4 | 15 | 1c | 2 | d | 14 | |||||
7 | 17 | 9 | 1b | 11 | 14 | 8 | 2 | 4 | 1e | b | 6 | 16 | 1d | c | 13 | 76 | 69 | 3 | ||
f | 5 | 1a | 1 | a | 1f | 15 | e | 3 | 19 | 1c | 12 | 18 | 0 | d | 10 | |||||
9 | 1e | 4 | 14 | 17 | 8 | 1f | 6 | 0 | 1d | 16 | 1b | e | d | a | 12 | 78 | 72 | 3 | ||
13 | 1a | 18 | b | f | 7 | 3 | 1 | 2 | 1c | 15 | 5 | 10 | c | 19 | 11 | |||||
1 | 3 | 17 | 18 | 15 | f | 12 | 2 | 0 | 13 | 4 | 6 | 8 | 1f | 11 | 19 | 80 | 75 | 3 | ||
7 | d | b | e | 1b | 1e | 10 | 9 | 14 | a | 1a | 1c | c | 5 | 1d | 16 |
g ∈ Orth(𝔽26) | δg | |L(g, δg)| | pg | |D(g, pg)| | λg | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14 | 2f | 15 | a | 17 | 3b | 25 | 1a | 1e | 9 | 8 | 3e | 1 | 28 | f | b | 72 | 27 | 4 | ||
1c | 31 | 2a | 24 | 30 | 29 | 39 | 11 | 4 | 26 | 10 | 36 | e | 2e | 2c | 38 | |||||
19 | 0 | 12 | 20 | 3f | 3d | 1b | 16 | 13 | 33 | 2 | 35 | 23 | 6 | 7 | 5 | |||||
21 | 34 | 22 | 1f | 2d | 3 | c | 3c | 27 | d | 18 | 1d | 32 | 3a | 2b | 37 | |||||
14 | 1 | c | 5 | 21 | f | 1d | 1e | 29 | 3d | 25 | 2f | 32 | 1f | 39 | 7 | 80 | 21 | 5 | ||
28 | 9 | 16 | 2a | 22 | 3b | 3 | 1a | 2 | 31 | b | 2e | 17 | 2c | 3e | 36 | |||||
30 | 11 | 18 | 4 | 6 | 26 | 3a | 20 | 2d | a | 37 | 35 | 13 | 0 | 15 | 12 | |||||
23 | 27 | e | 24 | 2b | 19 | 3f | 1c | 34 | 38 | 10 | 8 | 33 | 1b | 3c | d | |||||
29 | 18 | 1c | 3b | e | 3c | 25 | f | 13 | 35 | 3d | 36 | 0 | 3 | 19 | c | 83 | 27 | 5 | ||
24 | 37 | a | 2d | 38 | 3e | 1d | 8 | 32 | 1f | 1e | 1b | 34 | 28 | 33 | 1a | |||||
7 | 26 | 10 | 2e | 12 | 39 | 4 | 3a | 17 | 6 | 2b | 11 | d | 9 | 15 | 1 | |||||
22 | 20 | 2 | 16 | 14 | 23 | 5 | 27 | 31 | 2c | b | 21 | 2f | 3f | 2a | 30 | |||||
2 | 18 | 35 | 36 | 3b | c | 1a | 2c | 7 | d | 3a | 15 | 2b | 3f | 1c | 5 | 83 | 25 | 5 | ||
28 | 10 | 31 | 16 | b | 33 | 27 | 3e | 26 | 17 | 11 | 37 | 1f | a | 2d | 22 | |||||
1b | 3c | 1e | 9 | 4 | 25 | e | 1d | 20 | 3d | 39 | 6 | 8 | 21 | 34 | 0 | |||||
12 | 24 | 13 | 23 | 2f | 32 | 2e | 3 | 1 | f | 14 | 2a | 19 | 30 | 38 | 29 | |||||
1a | 2e | 16 | 27 | 15 | e | 36 | 21 | 22 | 30 | 4 | 1c | f | 3a | 1d | d | 83 | 27 | 4 | ||
28 | 3d | 3c | 26 | 8 | 18 | b | 2c | 0 | 39 | 5 | 1e | 2f | 3 | 35 | 2b | |||||
2a | 29 | 1 | 2 | 32 | 17 | 3f | 19 | 14 | 20 | 1b | 2d | 3e | a | c | 10 | |||||
6 | 24 | 1f | 34 | 9 | 25 | 37 | 12 | 23 | 11 | 13 | 3b | 38 | 7 | 31 | 33 | |||||
13 | 28 | 19 | f | 3c | 24 | 9 | 1f | 2d | 2b | 20 | d | 31 | 6 | 14 | 39 | 85 | 30 | 4 | ||
10 | 22 | 18 | c | 21 | 25 | b | 3f | 1a | 27 | 3 | 38 | 3b | 32 | 2 | e | |||||
35 | 15 | 36 | 34 | a | 1 | 17 | 1c | 26 | 2a | 1d | 2c | 16 | 29 | 5 | 3d | |||||
2e | 11 | 1e | 23 | 12 | 30 | 1b | 3a | 7 | 2f | 8 | 33 | 0 | 4 | 37 | 3e | |||||
f | 0 | 30 | 2f | 13 | 2a | 24 | 1a | 6 | 39 | 3d | 2b | 4 | 12 | d | a | 86 | 19 | 5 | ||
e | 1b | 2c | 22 | 3c | 21 | 25 | c | 31 | 33 | 9 | 16 | 38 | 36 | 19 | 7 | |||||
3 | 18 | 1f | 28 | 2d | 3f | 34 | 1c | 3e | 15 | 2e | 32 | 1 | 8 | 14 | 17 | |||||
11 | 20 | 27 | 5 | b | 37 | 26 | 2 | 1e | 35 | 1d | 3b | 3a | 29 | 10 | 23 | |||||
39 | 22 | 7 | 1e | 30 | 5 | 0 | 28 | 10 | 34 | 3a | 3d | 3b | 1d | 1b | 2b | 88 | 27 | 5 | ||
1c | 19 | 2a | 35 | 38 | 11 | 2 | 37 | a | 3e | 6 | 31 | b | 4 | 25 | 1 | |||||
15 | 26 | 21 | 2d | 2e | 2c | e | 36 | 27 | 3f | 3 | 18 | 16 | c | 2f | 13 | |||||
23 | 14 | 29 | d | 1f | 17 | 9 | 1a | 33 | 8 | 20 | 24 | 12 | f | 3c | 32 |
g ∈ Orth(𝔽27) | δg | |L(g, δg)| | pg | |D(g, pg)| | λg | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6c | 34 | 60 | 19 | 7d | 5d | 43 | 2d | d | 24 | 5b | 18 | 29 | 10 | 26 | 50 | 16 | 147 | 5 | ||
b | 47 | 33 | 1a | 2c | 1d | 20 | 15 | 72 | 32 | 6a | 4b | 63 | 1 | 52 | 59 | |||||
13 | 4a | 16 | 4c | 31 | c | 58 | 7a | 7f | 22 | 71 | 65 | 5e | 57 | 64 | 9 | |||||
46 | 55 | 79 | 7e | 38 | 56 | 2e | 14 | 62 | 41 | 4 | 2 | 28 | 6f | f | 8 | |||||
67 | 3 | 6d | 36 | 40 | 5 | 7c | 1b | 3f | 4f | 6e | a | 12 | 5a | 4d | 21 | |||||
6b | 37 | 44 | 7 | 69 | 54 | 3b | 2b | 1c | 75 | 48 | 3e | 2f | 3a | 23 | 51 | |||||
11 | 70 | 25 | 5c | 3d | 30 | e | 6 | 68 | 76 | 73 | 49 | 17 | 5f | 4e | 27 | |||||
39 | 61 | 78 | 3c | 0 | 45 | 35 | 1e | 66 | 2a | 77 | 74 | 7b | 53 | 42 | 1f | |||||
3e | 23 | 39 | 4f | 3b | 46 | 20 | f | 7a | 78 | 69 | 6e | 4c | 15 | 2a | 13 | 17 | 143 | 5 | ||
70 | 66 | 79 | 6b | 3d | 5c | 17 | 56 | 37 | 3c | d | 40 | 2d | 35 | 7c | 11 | |||||
68 | 49 | 12 | 61 | 31 | 36 | 76 | 7d | 7b | 10 | 2c | 65 | 58 | 1b | 5e | 7e | |||||
a | 6d | 1 | 75 | 3f | 4a | 48 | 73 | 26 | 42 | 16 | c | 52 | 1a | 14 | 32 | |||||
60 | 38 | 1c | 2f | 6f | 22 | 1f | 6a | 21 | 5f | 45 | 5b | 19 | 47 | 28 | 2 | |||||
41 | 4b | 51 | 4e | 5d | 34 | 44 | 24 | 2e | b | 62 | 1e | 59 | 9 | 6 | 8 | |||||
4 | 1d | 29 | 67 | 64 | 50 | 30 | 5a | 27 | 72 | 7 | 57 | 2b | 74 | 33 | 0 | |||||
3a | 43 | 18 | 7f | 55 | 77 | 71 | 54 | 6c | 4d | 25 | e | 63 | 53 | 3 | 5 | |||||
6d | f | 5f | 4b | 1b | 15 | 2b | 6c | 71 | 3 | 5b | 4a | 5e | 70 | 49 | 44 | 19 | 190 | 5 | ||
3a | c | 58 | 40 | 4c | 4f | 2f | 29 | 14 | 8 | 46 | 23 | 7d | 52 | 4 | 3e | |||||
34 | 41 | 5d | 13 | 3f | 18 | 45 | 21 | 2c | 7f | 1c | 22 | 16 | 35 | 9 | 63 | |||||
2e | 17 | e | 20 | 39 | 7c | 42 | 4d | 5a | 6e | 56 | 78 | 68 | 54 | 36 | 38 | |||||
0 | 43 | 60 | 77 | 7b | 2d | 31 | 3c | 30 | 7 | 1a | 10 | 47 | 7e | 59 | 53 | |||||
73 | 64 | 79 | 25 | 27 | 67 | 33 | 57 | 1e | 6 | 61 | 6a | 74 | 32 | 69 | 7a | |||||
12 | 48 | 3b | 1f | 76 | 1 | 65 | 62 | 2a | 37 | 4e | 26 | 75 | 28 | 6f | 5 | |||||
66 | 24 | 2 | 5c | a | 55 | 11 | 19 | d | 3d | b | 1d | 50 | 72 | 6b | 51 | |||||
7d | 2c | 1e | 51 | 27 | 68 | 19 | 12 | 58 | 66 | 3b | 18 | 74 | 47 | 34 | 7c | 20 | 165 | 5 | ||
36 | 45 | 29 | 70 | e | 5 | 56 | 4d | 3f | 1d | 1a | 57 | 16 | 78 | 1b | 6f | |||||
49 | b | 43 | 2f | 79 | 4 | 5f | 4f | 63 | 3d | 65 | 3 | 2 | 6b | 48 | 26 | |||||
4c | 11 | 35 | 38 | 6 | 2b | 37 | 59 | 5a | 5d | 7e | 5b | 10 | 7a | 6d | 28 | |||||
52 | c | 4a | 1c | 72 | 32 | 17 | 7f | 4b | a | 61 | 53 | 15 | 5c | 40 | 71 | |||||
60 | 6e | 24 | 55 | 42 | 3e | 62 | 64 | 2a | 2d | d | 2e | 73 | 6a | 77 | 7 | |||||
21 | 6c | 39 | 5e | 46 | f | 23 | 31 | 13 | 20 | 4e | 76 | 0 | 54 | 1f | 33 | |||||
69 | 44 | 8 | 14 | 3a | 50 | 9 | 22 | 30 | 7b | 75 | 25 | 67 | 41 | 3c | 1 | |||||
35 | 58 | 70 | a | 21 | 1 | 56 | 3b | e | 3a | 43 | 50 | 37 | 72 | 28 | f | 23 | 156 | 5 | ||
18 | 5 | 39 | 4e | 24 | 2 | 6d | 7e | 36 | 47 | 66 | 22 | 79 | 1c | 26 | 9 | |||||
4c | 46 | 65 | 5b | 19 | 4a | 3e | 52 | 51 | 44 | 1d | 49 | 5f | 20 | 5a | 55 | |||||
6f | 13 | 67 | 5d | 7c | 2a | 8 | 30 | 23 | 7d | 60 | 78 | 3f | 73 | 1f | 16 | |||||
64 | c | 74 | 33 | 59 | 7f | 69 | 1b | 2b | 1a | 1e | 68 | 7 | 29 | 42 | 25 | |||||
61 | 31 | 48 | 2e | 3 | 15 | 0 | 12 | 2f | 57 | 7a | 14 | d | 3c | 4f | 54 | |||||
32 | 27 | 4 | 76 | 77 | 3d | 4b | 2d | 40 | 63 | 4d | 41 | 53 | 2c | 5c | 11 | |||||
75 | 45 | 5e | 71 | 7b | 6c | 6a | 6 | 34 | 6b | 38 | 10 | 62 | b | 6e | 17 | |||||
38 | 70 | 29 | 8 | 69 | 24 | f | 7b | 5f | 46 | e | 34 | 78 | 10 | 1c | 32 | 24 | 178 | 5 | ||
6d | 3d | 31 | 12 | 6e | 5 | 2 | 5a | 79 | 37 | 51 | 63 | 2c | 44 | 60 | 35 | |||||
4e | 3b | 7e | 40 | 57 | 7f | 39 | 48 | 2f | 23 | 1b | 6c | 72 | 2e | 49 | 3c | |||||
c | 28 | 45 | 9 | 5e | 71 | 14 | 1f | 15 | 75 | 74 | 73 | 5c | 1d | 58 | 4a | |||||
77 | 2d | 19 | 6a | 4 | 4d | 43 | 18 | 50 | 4f | 33 | 6f | 27 | 62 | 55 | 6 | |||||
16 | 1 | a | 53 | 36 | 59 | 0 | 3f | 7d | 54 | 68 | 3e | 42 | 17 | 67 | 1e | |||||
5b | 1a | 56 | 30 | 66 | 20 | 41 | 52 | 2b | d | 76 | 5d | 7a | 4b | 11 | 61 | |||||
25 | 3 | 65 | 7c | 26 | 64 | 22 | 7 | 3a | 47 | 13 | 2a | 21 | b | 6b | 4c | |||||
56 | 65 | a | 6d | 24 | 67 | 73 | 16 | 20 | 34 | 5 | 6a | 3d | 74 | 3a | e | 26 | 161 | 5 | ||
1d | 2 | 61 | 55 | 2f | 42 | 0 | 19 | 43 | d | 70 | 52 | 35 | 30 | 4a | 79 | |||||
75 | 4 | 10 | 7b | 50 | 4e | 18 | 77 | 6f | 2b | 1 | 44 | 4b | 6c | 53 | 36 | |||||
3c | 32 | 7c | 76 | 4f | 13 | 49 | 2d | 8 | 3e | 46 | 3f | 39 | 2a | 72 | 5c | |||||
64 | 1f | f | 45 | 68 | 7d | 5e | 4c | 5a | 1b | 22 | 27 | 59 | 28 | c | 7 | |||||
1a | 6e | 6b | 71 | 48 | 11 | 3b | 37 | 29 | 47 | 3 | 6 | 2c | 12 | 69 | 78 | |||||
23 | 54 | 38 | 40 | 1e | 7a | 14 | 4d | 5b | 17 | 1c | 5d | 33 | 51 | 2e | 66 | |||||
21 | 5f | 62 | b | 7e | 26 | 57 | 58 | 63 | 25 | 31 | 41 | 15 | 60 | 9 | 7f | |||||
13 | 7b | 37 | 48 | 4d | d | 4a | 7 | 5e | 10 | c | 5a | 50 | 58 | 2b | 69 | 28 | 191 | 5 | ||
14 | 21 | 3e | 31 | 5c | 23 | 28 | 77 | 6b | 3d | 6e | 7f | 1e | 5 | 25 | 3f | |||||
2c | 64 | 4b | 22 | 36 | 65 | 1f | 74 | 43 | 67 | 75 | 18 | 6a | 39 | 7e | 72 | |||||
73 | 2a | 2e | 1a | 79 | 30 | 61 | 2d | 4f | 78 | 6 | 51 | 62 | 16 | 53 | 19 | |||||
7d | 66 | 34 | 9 | 38 | 54 | 2 | 32 | 57 | 11 | 35 | 27 | 41 | 5d | 6f | 70 | |||||
a | 52 | 3a | 45 | 33 | 5b | 7c | 42 | 46 | 68 | 15 | 0 | 56 | 3c | 71 | 24 | |||||
3 | 76 | 20 | 4e | 63 | 6c | 6d | 55 | 40 | 1b | 49 | e | 1d | 59 | 29 | 3b | |||||
12 | 5f | b | 1c | 26 | 7a | 2f | f | 8 | 17 | 4 | 4c | 1 | 60 | 44 | 47 |
Linear orthomorpism g0 | Orthomorphism g obtained from g0 with the use of the new method | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δg0 = 1, pg0 = 1, λg0 = 1 | δg = |
||||||||||||||||||||||||||||||
0 | 66 | 81 | e7 | 90 | f6 | 11 | 77 | c1 | a7 | 40 | 26 | 51 | 37 | d0 | b6 | 67 | c8 | 2e | 5 | 9e | 70 | 8c | 79 | 56 | d7 | 63 | 9c | bd | e3 | 3a | d6 |
17 | 71 | 96 | f0 | 87 | e1 | 6 | 60 | d6 | b0 | 57 | 31 | 46 | 20 | c7 | a1 | 21 | 57 | 9f | 58 | 36 | e1 | 6 | 9b | a2 | 7 | e2 | 42 | 7d | 20 | d0 | e8 |
a9 | cf | 28 | 4e | 39 | 5f | b8 | de | 68 | e | e9 | 8f | f8 | 9e | 79 | 1f | 72 | e7 | 8d | fb | 11 | 60 | a5 | 92 | 68 | 61 | 2b | 83 | 6e | 8a | 38 | 93 |
be | d8 | 3f | 59 | 2e | 48 | af | c9 | 7f | 19 | fe | 98 | ef | 89 | 6e | 8 | 6d | 6b | d8 | ad | d2 | a3 | 3d | f0 | 19 | 98 | b4 | c4 | 53 | fe | c | e0 |
42 | 24 | c3 | a5 | d2 | b4 | 53 | 35 | 83 | e5 | 2 | 64 | 13 | 75 | 92 | f4 | 2d | fa | 24 | db | 8f | 3f | ce | f4 | a7 | 5b | 52 | 89 | 45 | b7 | aa | cf |
55 | 33 | d4 | b2 | c5 | a3 | 44 | 22 | 94 | f2 | 15 | 73 | 4 | 62 | 85 | e3 | 41 | 5c | 5d | 51 | c5 | 69 | ee | 39 | ef | 26 | de | 88 | b0 | c2 | 13 | 64 |
eb | 8d | 6a | c | 7b | 1d | fa | 9c | 2a | 4c | ab | cd | ba | dc | 3b | 5d | 17 | 90 | 4c | f1 | 34 | 71 | 73 | 85 | c6 | fc | 81 | 95 | f5 | d | ca | 3 |
fc | 9a | 7d | 1b | 6c | a | ed | 8b | 3d | 5b | bc | da | ad | cb | 2c | 4a | d9 | 76 | 54 | 96 | fd | df | 31 | 6c | 9 | c9 | 1e | 2f | 59 | 28 | 7e | 1c |
f3 | 95 | 72 | 14 | 63 | 5 | e2 | 84 | 32 | 54 | b3 | d5 | a2 | c4 | 23 | 45 | f3 | 4d | ab | 94 | dc | 4f | 1b | 7a | b2 | 30 | 3c | 10 | af | 5a | be | 4a |
e4 | 82 | 65 | 3 | 74 | 12 | f5 | 93 | 25 | 43 | a4 | c2 | b5 | d3 | 34 | 52 | e4 | 82 | f8 | 12 | bc | 37 | 9a | cc | 7f | a | a9 | bb | 47 | 80 | 32 | a0 |
5a | 3c | db | bd | ca | ac | 4b | 2d | 9b | fd | 1a | 7c | b | 6d | 8a | ec | 99 | 8b | a1 | c1 | eb | 75 | 91 | 44 | 87 | 14 | 6a | d3 | c7 | d1 | b1 | 33 |
4d | 2b | cc | aa | dd | bb | 5c | 3a | 8c | ea | d | 6b | 1c | 7a | 9d | fb | 62 | 3e | 49 | 43 | e5 | ac | f2 | f9 | 4b | ea | 1f | cb | a6 | b3 | f7 | cd |
b1 | d7 | 30 | 56 | 21 | 47 | a0 | c6 | 70 | 16 | f1 | 97 | e0 | 86 | 61 | 7 | ed | a4 | b9 | 23 | 15 | 77 | 27 | 84 | b5 | 8 | 9d | 97 | ba | 0 | 3b | 1a |
a6 | c0 | 27 | 41 | 36 | 50 | b7 | d1 | 67 | 1 | e6 | 80 | f7 | 91 | 76 | 10 | 18 | b | 50 | f | 2 | 2c | 2a | dd | 5e | 4 | ec | 65 | 35 | d5 | e6 | 7c |
18 | 7e | 99 | ff | 88 | ee | 9 | 6f | d9 | bf | 58 | 3e | 49 | 2f | c8 | ae | 74 | 25 | a8 | ff | c3 | 4e | 29 | b8 | 48 | bf | 55 | 46 | e9 | 66 | 86 | ae |
f | 69 | 8e | e8 | 9f | f9 | 1e | 78 | ce | a8 | 4f | 29 | 5e | 38 | df | b9 | d4 | da | f6 | 1 | 40 | 1d | 22 | 8e | e | 5f | b6 | 16 | 7b | 78 | c0 | 6f |
Permutations g0 and g have 13 values in common (the corresponding positions are marked in bold face) |
Piecewise linear orthomorphism g0 | orthomorphism g obtained from g0 with the use of the new method | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δg0 = |
δg = |
||||||||||||||||||||||||||||||
0 | 1f | 2f | 62 | d9 | 5a | 74 | be | 33 | da | f2 | a4 | a9 | 87 | 80 | a5 | 0 | 1f | 2f | 62 | d9 | aa | 74 | be | 33 | da | f2 | 5a | a9 | 87 | 80 | a5 |
c2 | 4 | 6d | ab | 5d | 46 | 52 | 9f | 32 | d | 2b | b5 | e5 | ba | a8 | bf | c2 | 4 | 6d | ab | 5d | 46 | 52 | 9f | 32 | d | 2b | b5 | e5 | ba | a8 | bf |
7a | 20 | d6 | 15 | bb | 7 | 85 | 72 | 44 | 1 | 9a | cd | 43 | 84 | 9d | 58 | 7a | 20 | d6 | 15 | bb | 7 | 85 | 72 | 44 | 1 | 9a | cd | 43 | 84 | 9d | 58 |
19 | 36 | 88 | 71 | f1 | b2 | 3f | 39 | d0 | 9b | 31 | f3 | b3 | e2 | c0 | fb | 19 | 36 | 88 | 71 | f1 | b2 | 3f | 39 | d0 | 9b | 31 | f3 | b3 | e2 | c0 | fb |
fc | ff | 70 | 29 | 59 | a7 | d7 | c6 | 35 | cf | d4 | fe | 6b | 23 | af | dd | fc | ff | 70 | 29 | 59 | a7 | d7 | c6 | 35 | cf | d4 | fe | 6b | 23 | af | dd |
48 | 93 | d2 | ae | 82 | 1d | 4f | 34 | 50 | 99 | d3 | 6e | 7c | 6a | 90 | cc | 48 | 93 | d2 | ae | 82 | 1d | 4f | 34 | 50 | 99 | d3 | 6e | 7c | 6a | 90 | cc |
54 | 3d | 75 | 89 | 28 | 96 | 27 | f0 | 38 | 12 | 8d | 2 | 49 | ee | b6 | 17 | 54 | 3d | 75 | 89 | 28 | 96 | 27 | f0 | 38 | 12 | 8d | 2 | 49 | ee | b6 | 17 |
53 | d5 | 97 | 1e | 7e | c4 | 57 | a2 | 1c | a | 4a | e3 | 98 | 67 | 40 | 64 | 53 | d5 | 97 | 1e | 7e | c4 | 57 | a2 | 1c | a | 4a | e3 | 98 | 67 | 40 | 64 |
e8 | f8 | c1 | d8 | bd | db | 4c | 4b | 13 | b | f | df | 81 | 25 | 63 | c8 | e8 | f8 | c1 | d8 | bd | db | 4c | 4b | 13 | b | f | df | 81 | 25 | 63 | c8 |
61 | c9 | b4 | 18 | 7f | 83 | 94 | dc | ce | ed | 2e | 45 | 10 | 66 | f5 | 3e | 61 | c9 | b4 | 18 | 7f | 83 | 94 | dc | ce | ed | 2e | 45 | 10 | 66 | f5 | 3e |
79 | 37 | c7 | 73 | 69 | 8b | b9 | 68 | 6f | 1b | 56 | e1 | ec | 1a | 5b | 22 | 79 | 37 | c7 | 73 | 69 | 8b | b9 | 68 | 6f | 1b | 56 | e1 | ec | 1a | 5b | 22 |
e7 | 5e | 8f | 78 | fa | 55 | ef | a6 | 2c | f6 | 91 | b8 | a0 | 7b | 4e | 26 | e7 | 5e | 8f | 78 | fa | 55 | ef | a6 | 2c | f6 | 91 | b8 | a0 | 7b | 4e | 26 |
86 | b7 | bc | c5 | 5 | e9 | ca | 30 | 3a | 65 | 16 | ac | 5c | 3b | 2d | 92 | 86 | b7 | bc | c5 | 5 | e9 | ca | 30 | 3a | 65 | 16 | ac | 5c | 3b | 2d | 92 |
f4 | 4d | 9 | b1 | 3 | d1 | b0 | 42 | eb | 8 | 77 | 60 | 41 | 76 | e4 | e0 | f4 | 4d | 9 | b1 | 3 | d1 | b0 | 42 | eb | 8 | 77 | 60 | 41 | 76 | e4 | e0 |
ad | 47 | 5f | e6 | a1 | f7 | de | 7d | 6c | f9 | 6 | 9e | c3 | 24 | 51 | 95 | ad | 47 | 5f | e6 | a1 | f7 | de | 7d | 6c | f9 | 6 | 9e | c3 | 24 | 51 | 95 |
2a | a3 | fd | c | e | 21 | 8a | cb | 11 | ea | 14 | aa | 9c | 8c | 8e | 3c | 2a | a3 | fd | c | e | 21 | 8a | cb | 11 | ea | 14 | a4 | 9c | 8c | 8e | 3c |
Permutations g0 and g differ in 3 values (the corresponding positions are marked in bold face) |
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Diagnostic tests under shifts with fixed filling tuple
- On the average-case complexity of Boolean functions under binomial distribution on their domains
- Boolean analogues of the Pascal triangle with maximal possible number of ones
- The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups
- On the complexity of monotone circuits for threshold symmetric Boolean functions
- Properties of multitype subcritical branching processes in random environment
Articles in the same Issue
- Frontmatter
- Diagnostic tests under shifts with fixed filling tuple
- On the average-case complexity of Boolean functions under binomial distribution on their domains
- Boolean analogues of the Pascal triangle with maximal possible number of ones
- The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups
- On the complexity of monotone circuits for threshold symmetric Boolean functions
- Properties of multitype subcritical branching processes in random environment