Abstract
We introduce a new model
Note: Originally published in Diskretnaya Matematika (2019) 31,№1, 72–98 (in Russian).
References
[1] Kolmogorov A. N., Uspenskii V. A., “Algorithms and Randomness”, Theory Probab. Appl. 32:3 (1987), 389–412.10.1137/1132060Search in Google Scholar
[2] Zubkov A. M., “Generators of pseudorandom numbers and their applications”, Proc. II Int. sci. conf. “Mathematics of information technology security”, MSU, 2003, 200–206 (in Russian).Search in Google Scholar
[3] Ivchenko G. I., Medvedev Yu. I., Introduction to Mathematical Statistics M.: URSS, 2010 (in Russian), 600 pp.Search in Google Scholar
[4] Shoytov A. M., “Probabilistic models of pseudo-random sequences in cryptography”, Problems of information security MSU, 2007, 116–134 (in Russian).Search in Google Scholar
[5] Mikhaylov V. G., Shoytov A. M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl. 25:5 (2015), 295–303.10.1515/dma-2015-0028Search in Google Scholar
[6] Kharin Yu. S., Petlitskii A. I., “A Markov chain of order s with r partial connections and statistical inference on its parameters”, Discrete Math. Appl. 17:3 (2007), 295–317.10.1515/dma.2007.026Search in Google Scholar
[7] Kharin Yu. S., Petlitskii A. I., “Identification of a binary Markov chain of order s with r partial connections subjected to additive distortions”, Discrete Math. Appl. 20:5-6 (2010), 487–508.10.1515/dma.2010.030Search in Google Scholar
[8] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl. 23:2 (2013), 153–169.10.1515/dma-2013-009Search in Google Scholar
[9] Kharin Yu. S., Vecherko E. V., “Detection of embeddings in binary Markov chains”, Discrete Math. Appl. 26:1 (2016), 13–29.10.1515/dma-2016-0002Search in Google Scholar
[10] Voloshko V. A., “Steganographic capacity for one-dimensional Markov cover”, Discrete Math. Appl. 27:4 (2017), 247–268.10.1515/dma-2017-0026Search in Google Scholar
[11] Korotkov E. V., Korotkova M. A., Kudryashov N. A., “Information decomposition method to analyze symbolical sequences”, Physics Letters A 2003,№312, 198–210.10.1016/S0375-9601(03)00641-8Search in Google Scholar
[12] Doob J. L., Stochastic Processes Wiley: New York, 1953.Search in Google Scholar
[13] Kharin Yu., Robustness in Statistical Forecasting Springer: New York, 2013.10.1007/978-3-319-00840-0Search in Google Scholar
[14] Jacobs P. A., Lewis P. A. W., “Stationary discrete autoregressive-moving average time series generated by mixtures”, J. Time Series Analysis 4:1 (1983), 19–36.10.1111/j.1467-9892.1983.tb00354.xSearch in Google Scholar
[15] Raftery A., Tavare S., “Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model”, J. Appl. Statist. 43:1 (1994), 179–199.10.2307/2986120Search in Google Scholar
[16] Kedem B., Fokianos K., Regression Models for Time Series Analysis Wiley: Hoboken, 2002.10.1002/0471266981Search in Google Scholar
[17] Kharin Yu., Maltsew M., “Markov chain of conditional order: properties and statistical analysis.”, Austrian J. Statist. 43:3–4 (2014), 205–216.10.17713/ajs.v43i3.32Search in Google Scholar
[18] Anderson T. W., The Statistical Analysis of Time Series Wiley, 1971.Search in Google Scholar
[19] Box G. E. P., Jenkins G., Time Series Analysis: Forecasting and Control Holden-Day, 1976.Search in Google Scholar
[20] Steutel F.W., van Harn K., “Discrete analogues of self-decomposability and stability”, The Ann. Probab. 7:5 (1979), 893–899.10.1214/aop/1176994950Search in Google Scholar
[21] Weiss C. H., An Introduction to Discrete-Valued Time Series Wiley: Hoboken, 2018.10.1002/9781119097013Search in Google Scholar
[22] Nelder J., Wedderburn R., “Generalized linear models”, J. Roy. Stat. Soc. Ser. A 135:3 (1972), 370–384.10.2307/2344614Search in Google Scholar
[23] Kharin Yu. S., Voloshko V. A., Medved E. A., “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Mathematical Methods of Statistics 27:2 (2018), 103–118.10.3103/S1066530718020023Search in Google Scholar
[24] Kharin Yu. S., Voloshko V. A., “Binomial conditionally nonlinear autoregressive model of discrete time series and its probabilistic and statistical properties”, Proc. Inst. math. NAS Belarus 26:1 (2018), 97–107 (in Russian).Search in Google Scholar
[25] McCullagh P., Nelder J. A., Generalized Linear Models. Second Edition Chapman and Hall: London, 1989.10.1007/978-1-4899-3242-6Search in Google Scholar
[26] Mishra A., Tiwary D., Singh S. K., “A class of quasi-binomial distributions.”, Sankhya: The Indian J. Statistics, Ser. 𝓑 54:1 (1992), 67–76.Search in Google Scholar
[27] Amari S., Nagaoka H., Methods of Information Geometry Oxford University Press, 2000.Search in Google Scholar
[28] Koepf W., Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities Springer-Verlag: London, 2014.10.1007/978-1-4471-6464-7Search in Google Scholar
[29] Billingsley P., “Statistical methods in Markov chains.”, Ann. Math. Statist. 32:1 (1961), 12–40.10.1214/aoms/1177705136Search in Google Scholar
[30] Shiryaev A. N., Probability Springer: New York, 1995.10.1007/978-1-4757-2539-1Search in Google Scholar
[31] Besag J., “Statistical analysis of non-lattice data”, The Statistician 24:3 (1975), 179–195.10.2307/2987782Search in Google Scholar
[32] Noble B., Daniel J. W., Applied Linear Algebra3rd Edition), Prentice-Hall: Englewood Cliffs, NJ, 1988.Search in Google Scholar
[33] Wald A., “Tests of statistical hypotheses concerning several parameters when the number of observations is large.”, Trans. Amer. Math. Soc. 54:3 (1943), 426–482.10.1090/S0002-9947-1943-0012401-3Search in Google Scholar
[34] Bagnoli M., Bergstrom T., Log-Concave Probability and Its Applications University of Michigan, 1989.Search in Google Scholar
[35] Jordan C., “Essai sur la géométrie à n dimensions”, Bull. Soc. Math. France 1875,№3, 103–174.10.24033/bsmf.90Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Group polynomials over rings
- Maximum subclasses in classes of linear automata over finite fields
- Using binary operations to construct a transitive set of block transformations
- Perfect matchings and K1,p-restricted graphs
- On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
- Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation
Articles in the same Issue
- Frontmatter
- Group polynomials over rings
- Maximum subclasses in classes of linear automata over finite fields
- Using binary operations to construct a transitive set of block transformations
- Perfect matchings and K1,p-restricted graphs
- On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
- Semibinomial conditionally nonlinear autoregressive models of discrete random sequences: probabilistic properties and statistical parameter estimation