Home Attribute-efficient learning of Boolean functions from Post closed classes
Article
Licensed
Unlicensed Requires Authentication

Attribute-efficient learning of Boolean functions from Post closed classes

  • Anastasiya V. Bistrigova EMAIL logo
Published/Copyright: October 17, 2020

Abstract

We consider exact attribute-efficient learning of functions from Post closed classes using membership queries and obtain bounds on learning complexity.


Note: Originally published in Diskretnaya Matematika (2019) 31,№2, 34–56 (in Russian).


References

[1] Post E., “Determination of all closed systems of truth tables”, Bull. Amer. Math. Soc., 26 (1920), 437.Search in Google Scholar

[2] Post E., “Two-valued iterative systems of mathematical logic”, Princeton Univ. Press, Princeton, 1941.10.1515/9781400882366Search in Google Scholar

[3] Kibkalo M. A., “On the automaton complexity of Post classes of Boolean functions”, Intellektuaľnye sistemy, 15:(1-4) (2011), 379–400 (in Russian).Search in Google Scholar

[4] Blokhina G.N., Kudryavtsev V. B., “On Post class spectra of Boolean functions”, Intellektuaľnye sistemy, 14:(1-4) (2010), 279–298 (in Russian).Search in Google Scholar

[5] Chlenova T. S., “On the layerness of closed classes of Boolean functions and k-valued logic functions”, Intellektuaľnye sistemy. Teoriya i prilozheniya, 18:1 (2014), 259–262 (in Russian).Search in Google Scholar

[6] Kalachev G. V., “On estimates of the flat circuit cardinality for closed classes of Boolean functions”, Intellektuaľnye sistemy. Teoriya i prilozheniya, 20:3 (2016), 52–57 (in Russian).Search in Google Scholar

[7] Komkov S. A., “Cardinality of generating sets for operations from the Post lattice classes”, Discrete Math. Appl., 29:3 (2019), 159–173.10.1515/dma-2019-0015Search in Google Scholar

[8] Osokin V. V., “On the parallel parameter-effective deciphering of pseudo-Boolean functions”, Intellektuaľnye sistemy. Teoriya i prilozheniya, 14:1-4 (2000), 429–458 (in Russian).Search in Google Scholar

[9] Gasanov E. E., Niyazova Z. A., “Deciphering arithmetic sums of a small number of monotone conjunctions”,Mater. XIMezhdunar. seminara Diskretnaya matematika i ee prilozheniya, Izd-vo mekh.-matem. f-ta MGU, Moscow, 2012, 335–337 (in Russian).Search in Google Scholar

[10] Niyazova Z. A., “Deciphering arithmetic sums of monotone conjunctions”, Intellektuaľnye sistemy. Teoriya i prilozheniya, 19:4 (2015), 169–195 (in Russian).Search in Google Scholar

[11] Damaschke P., “Adaptive versus nonadaptive attribute-efficient learning”, Machine Learning, 41 (2000), 197–215.10.1145/276698.276874Search in Google Scholar

[12] Osokin V. V., “On learning monotone Boolean functions with irrelevant variables”, Discrete Math. Appl., 20:3 (2010), 307–320.10.1515/dma.2010.018Search in Google Scholar

[13] Uehara R., Tsuchida K., Wegener I., “Optimal attribute-efficient learning of disjunction, parity, and threshold functions”, Proc. Third Europ. Conf. Comput. Learn. Theor. EuroCOLT ’97, 1997.10.1007/3-540-62685-9_15Search in Google Scholar

[14] Hofmeister T., “An application of codes to attribute-efficient learning”, Proc. 4th Europ. Conf. Comput. Learn. Theor. Euro-COLT ’99, 1999.10.1007/3-540-49097-3_9Search in Google Scholar

[15] Gasanov E. E., “Deciphering of linear ranking functions”, Mater. XI Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya”, Izd-vo mekh.-mat. f-ta MGU, 2012, 332–334 (in Russian).Search in Google Scholar

[16] Khegay S.I., “Decryption of polynomial ranking functions”, Intellektuaľnye sistemy, 19:1 (2015), 213–230 (in Russian).Search in Google Scholar

[17] Bshouty N. H., Cleve R., Gavalda R., Kannan S., Tamon Ch., “Oracles and queries that are sufficient for exact learning”, J. Comput. Syst. Sci., 52:3 (1996), 421–433.10.1006/jcss.1996.0032Search in Google Scholar

[18] Angluin D., “Queries and concept learning”, Machine Learning, 2:4 (1988), 319-342.10.1007/BF00116828Search in Google Scholar

[19] Damaschke P., “On parallel attribute-efficient learning”, J. Comput. Sci., 67 (2003), 46–62.10.1016/S0022-0000(03)00047-3Search in Google Scholar

[20] Korobkov V. K., “On monotone functions of algebra logic”, Problemy kibernetiki, 13, Nauka, Moscow, 1965 (in Russian).Search in Google Scholar

[21] Hansel G., “Sur le nombre des fonctions Boolenes monotones den variables”, CR Acad Sci Paris, 262(20) (1966), 1088–1090.Search in Google Scholar

[22] Sloane N. J. A., “Covering arrays and intersecting codes.”, J. Comb. Des., 1 (1993), 51–63.10.1002/jcd.3180010106Search in Google Scholar

[23] Kuliamin V.V., Petukhov A.A., “A survey of methods for constructing covering arrays”, Program. Comput. Soft., 37 (2011), 121.10.1134/S0361768811030029Search in Google Scholar

[24] Cohen D. M., Dalal S. R., Fredman M. L., Patton G. C., “The AETG System: an approach to testing based on combinatorial design”, IEEE Trans. Software Eng., 23:7 (1997), 437–444.10.1109/32.605761Search in Google Scholar

[25] Hartman A., “Software and hardware testing using combinatorial covering suites”, Graph Theory, Combinatorics and Algorithms, Oper. Res./Comput. Sci. Interfaces Ser., 34, Springer, Boston, MA.Search in Google Scholar

[26] Lim W. S., Alpern S., “Minimax rendezvous on the line”, SIAM J. Control and Optim., 34 (1996), 1650–1665.10.1137/S036301299427816XSearch in Google Scholar

[27] Gal S., “Rendezvous search on a line”, Oper. Res., 47 (1999), 974–976.10.1287/opre.47.6.974Search in Google Scholar

[28] Kleitman D.J., Spencer J., “Families of k-independent sets”, Discrete Mathematics, 6 (1973), 255-262.10.1016/0012-365X(73)90098-8Search in Google Scholar

[29] Lawrence J., Kacker R.N., Lei Y., Kuhn R., Forbes M., “A survey of binary covering arrays”, Electr. J. Comb., 18 (2011).10.37236/571Search in Google Scholar

[30] Gargano L., Korner J., Vaccaro U., “Sperner capacities”, Graphs and Combinatorics, 9 (1993), 31–46.10.1007/BF01195325Search in Google Scholar

[31] Sarkar K., Colbourn C.J., Bonis A.D., Vaccaro U., “Partial covering arrays: algorithms and asymptotics”, Theory Comput. Syst., 62:6 (2018), 1470–1489.10.1007/978-3-319-44543-4_34Search in Google Scholar

[32] Das S., Meszaros T., “A semi-random construction of small covering arrays”, 2017, arXiv: 1703–05252.Search in Google Scholar

[33] Iľin V. A., Sadovnichiy V. A., Sendov Bl. Kh.,Matematicheskiy analiz. Nachaľnyy kurs, Izd-voMosk. un-ta, 1985 (in Russian), 662 pp.Search in Google Scholar

Received: 2018-05-01
Published Online: 2020-10-17
Published in Print: 2020-10-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2020-0025/html
Scroll to top button