Home On classes of functions of many-valued logic with minimal logarithmic growth rate
Article
Licensed
Unlicensed Requires Authentication

On classes of functions of many-valued logic with minimal logarithmic growth rate

  • Stepan A. Komkov EMAIL logo
Published/Copyright: August 14, 2020

Abstract

We obtain a criterion for the minimal logarithmic growth rate for an arbitrary set with a given set of operations defined on it, i.e., we describe all finite sets A with operations on them such that the growth rate differs by at most a constant from the logarithmic growth rate to base ∣A∣.


Note: Originally published in Diskretnaya Matematika (2019) 31, №3, 47–57 (in Russian).


References

[1] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer, 1990.10.1007/978-1-4757-2103-4Search in Google Scholar

[2] Optical computing. Digital and Symbolic, ed. Arrathoon R., Marcel Dekker, New York and Basel, 1989, 410 pp.Search in Google Scholar

[3] Komkov S. A., “Cardinality of generating sets for operations from the Post lattice classes”, Discrete Math. Appl., 29:3 (2018), 159–173.10.1515/dma-2019-0015Search in Google Scholar

[4] Nikołskiy S. M., Course of mathematical analysis, Textbook for universities, 6, FIZMATLIT, Moscow, 2001 (in Russian), 592 pp.Search in Google Scholar

[5] Yablonskiy S. V., Introduction to Discrete Mathematics, Nauka, Moscow, 1986 (in Russian), 384 pp.Search in Google Scholar

[6] Erfanian A., Wiegold J., “A note on growth sequences of finite simple groups”, Bull. Australian Math. Soc., 51:3 (1995), 495–499.10.1017/S0004972700014337Search in Google Scholar

[7] Lau D., Function Algebras on Finite Sets, Berlin, Heidelberg: Springer Science & Business Media, 2006, 668 pp.Search in Google Scholar

[8] Meier D., Wiegold J., “Growth sequences of finite groups. V”, J. Australian Math. Soc., 31:3 (1981), 374–375.10.1017/S1446788700019509Search in Google Scholar

[9] Rosenberg I., Über die funktionale Vollständigkeit in den mehrwertigen Logiken: Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen, Pozpravy Ceskoslovensken Akad. Ved., Akademia, Praha, 1970, 93 pp.Search in Google Scholar

[10] Pollák G., “Growth sequence of globally idempotent semigroups”, J. Australian Math. Soc., 48:1 (1990), 87–88.10.1017/S1446788700035217Search in Google Scholar

[11] Quick M., Ruškuc N., “Growth of generating sets for direct powers of classical algebraic structures”, J. AustralianMath. Soc., 89:1 (2010), 105–126.10.1017/S1446788710001473Search in Google Scholar

[12] Riedel H. H. J., “Growth sequences of finite algebras”, Algebra Universalis, 20:1 (1985).10.1007/BF01236808Search in Google Scholar

[13] Sperner E., “Ein Satz über Untermengen einer endlichen Menge”, Math. Z., 27:1 (1928), 544–548.10.1007/BF01171114Search in Google Scholar

[14] Stewart A. G. R., Wiegold J., “Growth sequences of finitely generated groups. II”, Bull. Australian Math. Soc., 40:2 (1989), 323–329.10.1017/S0004972700004408Search in Google Scholar

[15] Wiegold J., “Growth sequences of finite groups”, J. Australian Math. Soc., 17:2 (1974), 133–141.10.1017/S1446788700016712Search in Google Scholar

[16] Wiegold J., “Growth sequences of finite groups. II”, J. Australian Math. Soc., 20:2 (1975), 225–229.10.1017/S144678870002053XSearch in Google Scholar

[17] Wiegold J., “Growth sequences of finite groups. III”, J. Australian Math. Soc., 25:2 (1978), 142–144.10.1017/S1446788700038726Search in Google Scholar

[18] Wiegold J., “Growth sequences of finite groups. IV”, J. Australian Math. Soc., 29:1 (1980), 14–16.10.1017/S1446788700020887Search in Google Scholar

[19] Wiegold J., Lausch H., “Growth sequences of finite semigroups”, J. Australian Math. Soc., 43:1 (1987), 16–20.10.1017/S1446788700028925Search in Google Scholar

[20] Wiegold J., Wilson J. S., “Growth sequences of finitely generated groups”, Arch. Math., 30:1 (1978), 337–343.10.1007/BF01226063Search in Google Scholar

[21] Zhuk D., “The size of generating sets of powers”, J. Comb. Theory, Ser. A, 167 (2009), 91–103.10.1016/j.jcta.2019.04.003Search in Google Scholar

Received: 2019-04-11
Published Online: 2020-08-14
Published in Print: 2020-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2020-0023/pdf
Scroll to top button