Article
Licensed
Unlicensed
Requires Authentication
The outer derivation of a complex Poisson manifold
-
J. L Brylinski
Published/Copyright:
June 11, 2008
Abstract
We introduce the canonical outer derivation (or vector field) on a Poisson manifold. This is a Poisson vector field well-defined modulo hamiltonian vector fields.We study this outer derivation by geometric and sheaf-theoretic methods, mostly for holomorphic Poisson manifolds.
Received: 1998-06-02
Published Online: 2008-06-11
Published in Print: 1999-01-15
© Walter de Gruyter
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Le problème de Brill-Noether pour des fibrés stables de petite pente
- The affine curve-lengthening flow
- Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres
- Analytic functions on Zariski open sets, and local cohomology
- Projective normality and syzygies of algebraic surfaces
- The outer derivation of a complex Poisson manifold
- Nevanlinna-Pick interpolation on the bidisk
- The isoperimetric inequality for minimal surfaces in a Riemannian manifold
- Values of symmetric square L-functions at 1
Articles in the same Issue
- Le problème de Brill-Noether pour des fibrés stables de petite pente
- The affine curve-lengthening flow
- Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres
- Analytic functions on Zariski open sets, and local cohomology
- Projective normality and syzygies of algebraic surfaces
- The outer derivation of a complex Poisson manifold
- Nevanlinna-Pick interpolation on the bidisk
- The isoperimetric inequality for minimal surfaces in a Riemannian manifold
- Values of symmetric square L-functions at 1