Abstract
We prove a conjecture by Ene, Herzog, and Hibi (2011) that the Betti numbers of the binomial edge ideal
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-2001064
Funding statement: The author is grateful to the National Science Foundation for partial support under Grant DMS-2001064.
Acknowledgements
I would like to thank the referee for their suggestions.
References
[1] A. Abedelfatah and E. Nevo, On vanishing patterns in j-strands of edge ideals, J. Algebraic Combin. 46 (2017), no. 2, 287–295. 10.1007/s10801-017-0747-5Search in Google Scholar
[2] H. Baskoroputro, On the binomial edge ideals of proper interval graphs, preprint (2016), https://arxiv.org/abs/1611.10117. Search in Google Scholar
[3] A. Boocher, Free resolutions and sparse determinantal ideals, Math. Res. Lett. 19 (2012), no. 4, 805–821. 10.4310/MRL.2012.v19.n4.a6Search in Google Scholar
[4] N. Botbol and M. Chardin, Castelnuovo Mumford regularity with respect to multigraded ideals, J. Algebra 474 (2017), 361–392. 10.1016/j.jalgebra.2016.11.017Search in Google Scholar
[5] A. Conca and M. Varbaro, Square-free Gröbner degenerations, Invent. Math. 221 (2020), no. 3, 713–730. 10.1007/s00222-020-00958-7Search in Google Scholar
[6] M. Crupi and G. Rinaldo, Binomial edge ideals with quadratic Gröbner bases, Electron. J. Combin. 18 (2011), no. 1, Paper No. 211. 10.37236/698Search in Google Scholar
[7] M. Crupi and G. Rinaldo, Closed graphs are proper interval graphs, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), no. 3, 37–44. 10.2478/auom-2014-0048Search in Google Scholar
[8] V. Ene, J. Herzog and T. Hibi, Cohen–Macaulay binomial edge ideals, Nagoya Math. J. 204 (2011), 57–68. 10.1215/00277630-1431831Search in Google Scholar
[9] V. Ene and A. Zarojanu, On the regularity of binomial edge ideals, Math. Nachr. 288 (2015), no. 1, 19–24. 10.1002/mana.201300186Search in Google Scholar
[10] V. Gasharov, I. Peeva and V. Welker, The lcm-lattice in monomial resolutions, Math. Res. Lett. 6 (1999), no. 5–6, 521–532. 10.4310/MRL.1999.v6.n5.a5Search in Google Scholar
[11] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle and J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), no. 3, 317–333. 10.1016/j.aam.2010.01.003Search in Google Scholar
[12] J. Herzog, T. Hibi and H. Ohsugi, Binomial ideals, Grad. Texts in Math. 279, Springer, Cham 2018. 10.1007/978-3-319-95349-6Search in Google Scholar
[13] J. Herzog, D. Kiani and S. Saeedi Madani, The linear strand of determinantal facet ideals, Michigan Math. J. 66 (2017), no. 1, 107–123. 10.1307/mmj/1488510028Search in Google Scholar
[14] D. Kiani and S. Saeedi Madani, Binomial edge ideals with pure resolutions, Collect. Math. 65 (2014), no. 3, 331–340. 10.1007/s13348-014-0107-xSearch in Google Scholar
[15] D. Kiani and S. Saeedi Madani, The Castelnuovo–Mumford regularity of binomial edge ideals, J. Combin. Theory Ser. A 139 (2016), 80–86. 10.1016/j.jcta.2015.11.004Search in Google Scholar
[16] K. Matsuda and S. Murai, Regularity bounds for binomial edge ideals, J. Commut. Algebra 5 (2013), no. 1, 141–149. 10.1216/JCA-2013-5-1-141Search in Google Scholar
[17] M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra 39 (2011), no. 3, 905–917. 10.1080/00927870903527584Search in Google Scholar
[18] I. Peeva, Graded syzygies, Algebr. Appl. 14, Springer, London 2011. 10.1007/978-0-85729-177-6Search in Google Scholar
[19] M. Rouzbahani Malayeri, S. Saeedi Madani and D. Kiani, A proof for a conjecture on the regularity of binomial edge ideals, J. Combin. Theory Ser. A 180 (2021), Paper No. 105432. 10.1016/j.jcta.2021.105432Search in Google Scholar
[20] G. Whieldon, Jump sequences of edge ideals, preprint (2010), https://arxiv.org/abs/1012.0108. Search in Google Scholar
[21] Macaulay2–a system for computation in algebraic geometry and commutative algebra programmed by D. Grayson and M. Stillman, http://www.math.uiuc.edu/Macaulay2/. Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Closed binomial edge ideals
- Eigenvalue estimates for 3-Sasaki structures
- The Yamabe flow on asymptotically flat manifolds
- Positive scalar curvature on manifolds with fibered singularities
- A Hitchin connection on nonabelian theta functions for parabolic 𝐺-bundles
- The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
- Regularity for convex viscosity solutions of Lagrangian mean curvature equation
- Capillary surfaces: Stability, index and curvature estimates
- Sign-changing solution for an overdetermined elliptic problem on unbounded domain
Articles in the same Issue
- Frontmatter
- Closed binomial edge ideals
- Eigenvalue estimates for 3-Sasaki structures
- The Yamabe flow on asymptotically flat manifolds
- Positive scalar curvature on manifolds with fibered singularities
- A Hitchin connection on nonabelian theta functions for parabolic 𝐺-bundles
- The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
- Regularity for convex viscosity solutions of Lagrangian mean curvature equation
- Capillary surfaces: Stability, index and curvature estimates
- Sign-changing solution for an overdetermined elliptic problem on unbounded domain