Home Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence
Article
Licensed
Unlicensed Requires Authentication

Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence

  • Gabriel Dospinescu , Vytautas Paškūnas EMAIL logo and Benjamin Schraen
Published/Copyright: June 29, 2023

Abstract

We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over p appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.

Funding statement: Benjamin Schraen and Gabriel Dospinescu are members of the A.N.R. project CLap-CLap ANR-18-CE40-0026. Gabriel Dospinescu is a member of the A.N.R. project Coloss ANR-19-CE40-0015.

Acknowledgements

We would like to thank Yongquan Hu for pointing out a blunder in an earlier draft. We thank Toby Gee, Lue Pan and Peter Scholze for their comments on a preliminary version of the paper. We thank Konstantin Ardakov for simplifying the proof of theorem 4.1, and Olivier Taïbi for several enlightening discussions around the results in this paper.

References

[1] K. Ardakov, Equivariant 𝒟 -modules on rigid analytic spaces, Astérisque 423, Société Mathématique de France, Paris 2021. 10.24033/ast.1145Search in Google Scholar

[2] K. Ardakov and K. A. Brown, Ring-theoretic properties of Iwasawa algebras: A survey, Doc. Math. 4 (2006), 7–33. 10.4171/dms/4/1Search in Google Scholar

[3] K. Ardakov and S. Wadsley, On irreducible representations of compact p-adic analytic groups, Ann. of Math. (2) 178 (2013), no. 2, 453–557. 10.4007/annals.2013.178.2.3Search in Google Scholar

[4] K. Ardakov and S. Wadsley, Verma modules for Iwasawa algebras are faithful, Münster J. Math. 7 (2014), no. 1, 5–26. Search in Google Scholar

[5] K. Ardakov and S. J. Wadsley, 𝒟 -modules on rigid analytic spaces I, J. reine angew. Math. 747 (2019), 221–275. 10.1515/crelle-2016-0016Search in Google Scholar

[6] D. J. Benson, Polynomial invariants of finite groups, London Math. Soc. Lecture Note Ser. 190, Cambridge University, Cambridge 1993. 10.1017/CBO9780511565809Search in Google Scholar

[7] P. Berthelot, 𝒟 -modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), no. 2, 185–272. 10.24033/asens.1739Search in Google Scholar

[8] A. Beĭlinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18. Search in Google Scholar

[9] J.-E. Björk, The Auslander condition on Noetherian rings, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris 1987/1988), Lecture Notes in Math. 1404, Springer, Berlin (1989), 137–173. 10.1007/BFb0084075Search in Google Scholar

[10] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 ( 𝐐 p ) . I, Compos. Math. 138 (2003), no. 2, 165–188. 10.1017/S1474748003000021Search in Google Scholar

[11] C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen, Gelfand–Kirillov dimension and mod p cohomology for GL 2 , preprint (2020), https://arxiv.org/abs/2009.03127. Search in Google Scholar

[12] C. J. Bushnell and G. Henniart, Explicit functorial correspondences for level zero representations of p-adic linear groups, J. Number Theory 131 (2011), no. 2, 309–331. 10.1016/j.jnt.2010.09.003Search in Google Scholar

[13] F. Calegari and M. Emerton, Completed cohomology—a survey, Non-abelian fundamental groups and Iwasawa theory, London Math. Soc. Lecture Note Ser. 393, Cambridge University, Cambridge (2012), 239–257. 10.1017/CBO9780511984440.010Search in Google Scholar

[14] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas and S. W. Shin, Patching and the p-adic local Langlands correspondence, Camb. J. Math. 4 (2016), no. 2, 197–287. 10.4310/CJM.2016.v4.n2.a2Search in Google Scholar

[15] A. Caraiani and P. Scholze, On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of Math. (2) 186 (2017), no. 3, 649–766. 10.4007/annals.2017.186.3.1Search in Google Scholar

[16] P. Colmez and G. Dospinescu, Complétés universels de représentations de GL 2 ( p ) , Algebra Number Theory 8 (2014), no. 6, 1447–1519. 10.2140/ant.2014.8.1447Search in Google Scholar

[17] P. Colmez, G. Dospinescu and V. Paškūnas, The p-adic local Langlands correspondence for GL 2 ( p ) , Camb. J. Math. 2 (2014), no. 1, 1–47. 10.4310/CJM.2014.v2.n1.a1Search in Google Scholar

[18] N. Conze, Algèbres d’opérateurs différentiels et quotients des algèbres enveloppantes, Bull. Soc. Math. France 102 (1974), 379–415. 10.24033/bsmf.1786Search in Google Scholar

[19] G. Dospinescu, Actions infinitésimales dans la correspondance de Langlands locale p-adique, Math. Ann. 354 (2012), no. 2, 627–657. 10.1007/s00208-011-0736-2Search in Google Scholar

[20] G. Dospinescu, V. Paškūnas and B. Schraen, Infinitesimal characters in arithmetic families, preprint (2020), https://arxiv.org/abs/2012.01041. Search in Google Scholar

[21] A. Dotto, Restriction of p-adic representations of GL 2 ( p ) to parahoric subgroups, preprint (2021), https://arxiv.org/abs/2111.12827. Search in Google Scholar

[22] A. Dotto and D. Le, Diagrams in the mod p cohomology of Shimura curves, Compos. Math. 157 (2021), no. 8, 1653–1723. 10.1112/S0010437X21007375Search in Google Scholar

[23] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Représentations p-adiques de groupes p-adiques III: Méthodes globales et géométriques, Astérisque 331, Société Mathématique de France, Paris (2010), 355–402. Search in Google Scholar

[24] M. Emerton and V. Paškūnas, On the density of supercuspidal points of fixed regular weight in local deformation rings and global Hecke algebras, J. Éc. polytech. Math. 7 (2020), 337–371. 10.5802/jep.119Search in Google Scholar

[25] T. Gee and M. Kisin, The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum Math. Pi 2 (2014), Paper No. E1. 10.1017/fmp.2014.1Search in Google Scholar

[26] T. Gee and J. Newton, Patching and the completed homology of locally symmetric spaces, J. Inst. Math. Jussieu 21 (2022), no. 2, 395–458. 10.1017/S1474748020000158Search in Google Scholar

[27] T. J. Hodges and S. P. Smith, Differential operators on the flag variety and the conze embedding, preprint (1984), https://sites.math.washington.edu/~smith/Research/mypapers.html. Search in Google Scholar

[28] Y. Hu and H. Wang, On some mod p representations of quaternion algebra over p , preprint (2022), https://arxiv.org/abs/2201.01464. Search in Google Scholar

[29] Y. Hu and H. Wang, On the mod p cohomology for GL 2 : the non-semisimple case, Camb. J. Math. 10 (2022), no. 2, 261–431. 10.4310/CJM.2022.v10.n2.a1Search in Google Scholar

[30] Y. Hu and H. Wang, On some p-adic and mod p representations of quaternion algebra over p , preprint (2023), https://arxiv.org/abs/2301.06053. Search in Google Scholar

[31] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505–586. 10.1007/s00222-009-0206-6Search in Google Scholar

[32] M. Kisin, The Fontaine–Mazur conjecture for GL 2 , J. Amer. Math. Soc. 22 (2009), no. 3, 641–690. 10.1090/S0894-0347-09-00628-6Search in Google Scholar

[33] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, New York 2002. 10.1007/978-1-4613-0041-0_1Search in Google Scholar

[34] T. Levasseur, Some properties of noncommutative regular graded rings, Glasg. Math. J. 34 (1992), no. 3, 277–300. 10.1017/S0017089500008843Search in Google Scholar

[35] H. Li and F. van Oystaeyen, Zariskian filtrations, K-Monogr. Math. 2, Kluwer Academic, Dordrecht 1996. Search in Google Scholar

[36] K. Liu, Local-global compatibility of mod p Langlands program for certain Shimura varieties, preprint (2021), https://arxiv.org/abs/2106.10674. 10.1007/s00229-022-01410-1Search in Google Scholar

[37] J. Ludwig, A quotient of the Lubin–Tate tower, Forum Math. Sigma 5 (2017), Paper No. e17. 10.1017/fms.2017.15Search in Google Scholar

[38] J. Manning and J. Shotton, Ihara’s lemma for Shimura curves over totally real fields via patching, Math. Ann. 379 (2021), no. 1–2, 187–234. 10.1007/s00208-020-02048-8Search in Google Scholar

[39] L. Pan, The Fontaine–Mazur conjecture in the residually reducible case, J. Amer. Math. Soc. 35 (2022), no. 4, 1031–1169.10.1090/jams/991Search in Google Scholar

[40] V. Paškūnas, Extensions for supersingular representations of GL 2 ( p ) , Représentations p-adiques de groupes p-adiques III: Méthodes globales et géométriques, Astérisque 331, Société Mathématique de France, Paris (2010), 317–353. Search in Google Scholar

[41] V. Paškūnas, The image of Colmez’s Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1–191. 10.1007/s10240-013-0049-ySearch in Google Scholar

[42] V. Paškūnas, On the Breuil–Mézard conjecture, Duke Math. J. 164 (2015), no. 2, 297–359. 10.1215/00127094-2861604Search in Google Scholar

[43] V. Paškūnas, On 2-dimensional 2-adic Galois representations of local and global fields, Algebra Number Theory 10 (2016), no. 6, 1301–1358. 10.2140/ant.2016.10.1301Search in Google Scholar

[44] V. Paškūnas, On some consequences of a theorem of J. Ludwig, J. Inst. Math. Jussieu 21 (2022), no. 3, 1067–1106. 10.1017/S1474748020000547Search in Google Scholar

[45] V. Paškūnas and S.-N. Tung, Finiteness properties of the category of mod p representations of GL 2 ( p ) , Forum Math. Sigma 9 (2021), Paper No. e80. 10.1017/fms.2021.72Search in Google Scholar

[46] J. J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York 2009. 10.1007/b98977Search in Google Scholar

[47] T. Schmidt, Auslander regularity of p-adic distribution algebras, Represent. Theory 12 (2008), 37–57. 10.1090/S1088-4165-08-00323-3Search in Google Scholar

[48] T. Schmidt, Analytic vectors in continuous p-adic representations, Compos. Math. 145 (2009), no. 1, 247–270. 10.1112/S0010437X08003825Search in Google Scholar

[49] T. Schmidt and M. Strauch, Dimensions of some locally analytic representations, Represent. Theory 20 (2016), 14–38. 10.1090/ert/475Search in Google Scholar

[50] P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. 10.1007/s00222-002-0284-1Search in Google Scholar

[51] P. Schneider, J. Teitelbaum and D. Prasad, U ( 𝔤 ) -finite locally analytic representations, Represent. Theory 5 (2001), 111–128. 10.1090/S1088-4165-01-00109-1Search in Google Scholar

[52] P. Schneider and O. Venjakob, S K 1 and Lie algebras, Math. Ann. 357 (2013), no. 4, 1455–1483. 10.1007/s00208-013-0943-0Search in Google Scholar

[53] P. Scholze, On the p-adic cohomology of the Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 4, 811–863. 10.24033/asens.2367Search in Google Scholar

[54] P. Scholze and J. Weinstein, Berkeley lectures on p-adic geometry, Ann. of Math. Stud. 207, Princeton University, Princeton 2020. 10.23943/princeton/9780691202082.001.0001Search in Google Scholar

[55] J.-P. Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Math. 1500, Springer, Berlin 1992. 10.1007/978-3-540-70634-2_1Search in Google Scholar

[56] M. Strauch, Geometrically connected components of Lubin–Tate deformation spaces with level structures, Pure Appl. Math. Q. 4 (2008), no. 4, 1215–1232. 10.4310/PAMQ.2008.v4.n4.a10Search in Google Scholar

[57] R. Taylor, On the meromorphic continuation of degree two L-functions, Doc. Math. 2006 (2006), 729–779. 10.4171/dms/4/22Search in Google Scholar

[58] J. A. Thorne, A 2-adic automorphy lifting theorem for unitary groups over CM fields, Math. Z. 285 (2017), no. 1–2, 1–38. 10.1007/s00209-016-1681-2Search in Google Scholar

[59] S.-N. Tung, On the automorphy of 2-dimensional potentially semistable deformation rings of G p , Algebra Number Theory 15 (2021), no. 9, 2173–2194. 10.2140/ant.2021.15.2173Search in Google Scholar

[60] S.-N. Tung, On the modularity of 2-adic potentially semi-stable deformation rings, Math. Z. 298 (2021), no. 1–2, 107–159. 10.1007/s00209-020-02588-4Search in Google Scholar

[61] O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271–311. 10.1007/s100970100038Search in Google Scholar

Received: 2022-01-31
Revised: 2023-04-17
Published Online: 2023-06-29
Published in Print: 2023-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2023-0033/html?lang=en
Scroll to top button