Abstract
We study deformations of rational curves and their singularities
in positive characteristic.
We use this to prove that if a smooth and proper surface
in positive characteristic p is dominated by a family of rational curves
such that one member has all δ-invariants (resp. Jacobian numbers)
strictly less than
Funding source: Japan Society for the Promotion of Science
Award Identifier / Grant number: 18J22191
Award Identifier / Grant number: 20674001
Award Identifier / Grant number: 26800013
Funding statement:
Funding statement: The first named author is supported by Research Fellowships of Japan Society for the Promotion of Science for Young Scientists KAKENHI Grant Number 18J22191. The second named author is supported by the JSPS KAKENHI Grant Number 20674001 and 26800013. The third named author is supported by the ERC Consolidator Grant 681838 K3CRYSTAL.
Acknowledgements
The authors thank Frank Gounelas and Ichiro Shimada for comments and discussion. The authors thank Hiromu Tanaka for providing invaluable information on the geometry of surfaces over imperfect fields and references. Moreover, the authors thank Gert-Martin Greuel for many comments and suggestions, including a whole report on an earlier version of this article. Finally, the authors thank the referee for remarks and comments, which improve the article.
References
[1]
M. Artin,
Supersingular
[2] F. Bogomolov, B. Hassett and Y. Tschinkel, Constructing rational curves on K3 surfaces, Duke Math. J. 157 (2011), no. 3, 535–550. 10.1215/00127094-1272930Search in Google Scholar
[3] E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p. III, Invent. Math. 35 (1976), 197–232. 10.1007/978-1-4757-4265-7_24Search in Google Scholar
[4] E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo (1977), 23–42. 10.1017/CBO9780511569197.004Search in Google Scholar
[5] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge 1993. Search in Google Scholar
[6] L. Bădescu, Algebraic surfaces. Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author, Universitext, Springer, New York 2001. 10.1007/978-1-4757-3512-3Search in Google Scholar
[7] R.-O. Buchweitz and G.-M. Greuel, The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), no. 3, 241–281. 10.1007/BF01390254Search in Google Scholar
[8]
F. Charles,
The Tate conjecture for
[9] Y. Chen and L. Zhang, The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics, Math. Res. Lett. 22 (2015), no. 3, 675–696. 10.4310/MRL.2015.v22.n3.a3Search in Google Scholar
[10] F. R. Cossec and I. V. Dolgachev, Enriques surfaces. I, Progr. Math. 76, Birkhäuser, Boston 1989. 10.1007/978-1-4612-3696-2Search in Google Scholar
[11] A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 51–93. 10.1007/BF02698644Search in Google Scholar
[12] E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations. Dedicated to the 50th anniversary of IMPA, Bull. Braz. Math. Soc. (N.S.) 34 (2003), no. 1, 145–169. 10.1007/s00574-003-0006-3Search in Google Scholar
[13] U. Görtz and T. Wedhorn, Algebraic geometry I: Schemes with examples and exercises, Adv. Lect. Math., Vieweg + Teubner, Wiesbaden 2010. 10.1007/978-3-8348-9722-0Search in Google Scholar
[14] G.-M. Greuel and H. Kröning, Simple singularities in positive characteristic, Math. Z. 203 (1990), no. 2, 339–354. 10.1007/BF02570742Search in Google Scholar
[15] G.-M. Greuel, C. Lossen and E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin 2007. Search in Google Scholar
[16] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 1–231. 10.1007/BF02684322Search in Google Scholar
[17] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255. 10.1007/BF02684343Search in Google Scholar
[18] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 1–361. 10.1007/BF02732123Search in Google Scholar
[19] A. Grothendieck, Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1). Dirigé par A. Grothendieck. Augmenté de deux exposés de M. Raynaud, Lecture Notes in Math. 224, Springer, Berlin, 1971. 10.1007/BFb0058656Search in Google Scholar
[20] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar
[21] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University Press, Cambridge 2016. 10.1017/CBO9781316594193Search in Google Scholar
[22] J. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Proc. Natl. Acad. Sci. USA 46 (1960), 724–726. 10.1073/pnas.46.5.724Search in Google Scholar PubMed PubMed Central
[23] K. Ito, T. Ito and T. Koshikawa, CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture, preprint (2018), https://arxiv.org/abs/1809.09604. Search in Google Scholar
[24] W. Kim and K. Madapusi Pera, 2-adic integral canonical models, Forum Math. Sigma 4 (2016), Article ID e28. 10.1017/fms.2016.23Search in Google Scholar
[25] J. Kollár, Extremal rays on smooth threefolds, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 339–361. 10.24033/asens.1630Search in Google Scholar
[26] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer, Berlin 1996. 10.1007/978-3-662-03276-3Search in Google Scholar
[27] E. Kunz, Kähler differentials, Adv. Lect. Math., Friedr. Vieweg & Sohn, Braunschweig 1986. 10.1007/978-3-663-14074-0Search in Google Scholar
[28] W. E. Lang, Quasi-elliptic surfaces in characteristic three, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 473–500. 10.24033/asens.1373Search in Google Scholar
[29] C. Liedtke, Algebraic surfaces in positive characteristic, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham (2013), 229–292. 10.1007/978-1-4614-6482-2_11Search in Google Scholar
[30] C. Liedtke, Lectures on supersingular K3 surfaces and the crystalline Torelli theorem, K3 surfaces and their moduli, Progr. Math. 315, Birkhäuser/Springer, Cham (2016), 171–235. 10.1007/978-3-319-29959-4_8Search in Google Scholar
[31] C. Liedtke and M. Schütt, Unirational surfaces on the Noether line, Pacific J. Math. 239 (2009), no. 2, 343–356. 10.2140/pjm.2009.239.343Search in Google Scholar
[32] Q. Liu, Algebraic geometry and arithmetic curves. Translated from the French by Reinie Erné, Oxf. Grad. Texts Math. 6, Oxford University Press, Oxford 2002. 10.1093/oso/9780198502845.001.0001Search in Google Scholar
[33] S. Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. 10.1215/S0012-7094-39-00532-6Search in Google Scholar
[34] K. Madapusi Pera, The Tate conjecture for K3 surfaces in odd characteristic, Invent. Math. 201 (2015), no. 2, 625–668. 10.1007/s00222-014-0557-5Search in Google Scholar
[35] D. Maulik, Supersingular K3 surfaces for large primes. With an appendix by Andrew Snowden, Duke Math. J. 163 (2014), no. 13, 2357–2425. 10.1215/00127094-2804783Search in Google Scholar
[36] S. Mori and N. Saito, Fano threefolds with wild conic bundle structures, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 6, 111–114. 10.3792/pjaa.79.111Search in Google Scholar
[37]
N. Nygaard and A. Ogus,
Tate’s conjecture for
[38]
N. O. Nygaard,
The Tate conjecture for ordinary
[39] Z. Patakfalvi and J. Waldron, Singularities of general fibers and the LMMP, preprint (2017), http://arxiv.org/abs/1708.04268. 10.1353/ajm.2022.0009Search in Google Scholar
[40]
M. Raynaud,
Contre-exemple au “vanishing theorem” en caractéristique
[41] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89. 10.1007/BF01390094Search in Google Scholar
[42] D. S. Rim, Torsion differentials and deformation, Trans. Amer. Math. Soc. 169 (1972), 257–278. 10.1090/S0002-9947-1972-0342513-4Search in Google Scholar
[43]
A. N. Rudakov and I. R. Shafarevich,
Surfaces of type
[44]
A. N. Rudakov and I. R. Šafarevič,
Supersingular
[45] E. Sato, A criterion for uniruledness in positive characteristic, Tohoku Math. J. (2) 45 (1993), no. 4, 447–460. 10.2748/tmj/1178225839Search in Google Scholar
[46] S. Schröer, Singularities appearing on generic fibers of morphisms between smooth schemes, Michigan Math. J. 56 (2008), no. 1, 55–76. 10.1307/mmj/1213972397Search in Google Scholar
[47] S. Schröer, On genus change in algebraic curves over imperfect fields, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1239–1243. 10.1090/S0002-9939-08-09712-8Search in Google Scholar
[48] S. Schröer, On fibrations whose geometric fibers are nonreduced, Nagoya Math. J. 200 (2010), 35–57. 10.1215/00277630-2010-011Search in Google Scholar
[49] I. Shimada, On supercuspidal families of curves on a surface in positive characteristic, Math. Ann. 292 (1992), no. 4, 645–669. 10.1007/BF01444641Search in Google Scholar
[50] I. Shimada, Singularities of dual varieties in characteristic 2, Algebraic geometry in East Asia—Hanoi 2005, Adv. Stud. Pure Math. 50, Math. Soc. Japan, Tokyo (2008), 299–331. 10.1007/s10711-006-9074-zSearch in Google Scholar
[51] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), 233–236. 10.1007/BF01350715Search in Google Scholar
[52] T. Shioda, On unirationality of supersingular surfaces, Math. Ann. 225 (1977), no. 2, 155–159. 10.1007/BF01351719Search in Google Scholar
[53] T. Shioda and T. Katsura, On Fermat varieties, Tohoku Math. J. (2) 31 (1979), no. 1, 97–115. 10.2748/tmj/1178229881Search in Google Scholar
[54] H. Tanaka, Behavior of canonical divisors under purely inseparable base changes, J. Reine Angew. Math. 744 (2018), 237–264. 10.1515/crelle-2015-0111Search in Google Scholar
[55] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–406. 10.1090/S0002-9939-1952-0047631-9Search in Google Scholar
[56] G. N. Tjurina, Locally semi-universal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1026–1058. Search in Google Scholar
[57]
O. Zariski,
On Castelnuovo’s criterion of rationality
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Restriction formula and subadditivity property related to multiplier ideal sheaves
- Proper Lie groupoids are real analytic
- Deformations of rational curves in positive characteristic
- Curved Rickard complexes and link homologies
- Boundary properties of fractional objects: Flexibility of linear equations and rigidity of minimal graphs
Articles in the same Issue
- Frontmatter
- Restriction formula and subadditivity property related to multiplier ideal sheaves
- Proper Lie groupoids are real analytic
- Deformations of rational curves in positive characteristic
- Curved Rickard complexes and link homologies
- Boundary properties of fractional objects: Flexibility of linear equations and rigidity of minimal graphs