Home On the equidistribution of some Hodge loci
Article
Licensed
Unlicensed Requires Authentication

On the equidistribution of some Hodge loci

  • Salim Tayou ORCID logo EMAIL logo
Published/Copyright: November 9, 2018

Abstract

We prove the equidistribution of the Hodge locus for certain non-isotrivial, polarized variations of Hodge structure of weight 2 with h2,0=1 over complex, quasi-projective curves. Given some norm condition, we also give an asymptotic on the growth of the Hodge locus. In particular, this implies the equidistribution of elliptic fibrations in quasi-polarized, non-isotrivial families of K3 surfaces.

Funding statement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 715747).

Acknowledgements

I am very grateful to François Charles for introducing me to this subject, for the many discussions we had and for his enlightening guidance. I wish also to thank Quentin Guignard and Lucia Mocz for their careful reading of an earlier version of this paper. I have benefited from many useful conversations with Yohan Brunebarbe, Gaëtan Chenevier and Étienne Fouvry. Special thanks go to the referee who helped improving the exposition and reducing inaccuracies.

References

[1] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. 10.2307/1970457Search in Google Scholar

[2] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces. Vol. 4, 2nd ed., Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 2004. 10.1007/978-3-642-57739-0Search in Google Scholar

[3] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782. 10.4310/jdg/1214438181Search in Google Scholar

[4] N. Bergeron and C. Matheus, On special Lagrangian fibrations in generic twistor families of K3 surfaces, preprint (2017), https://arxiv.org/abs/1703.01746. Search in Google Scholar

[5] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. 10.1007/s002220050232Search in Google Scholar

[6] R. E. Borcherds, The Gross–Kohnen–Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), no. 2, 219–233. 10.1215/S0012-7094-99-09710-7Search in Google Scholar

[7] R. E. Borcherds, L. Katzarkov, T. Pantev and N. I. Shepherd-Barron, Families of K3 surfaces, J. Algebraic Geom. 7 (1998), no. 1, 183–193. Search in Google Scholar

[8] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Differential Geom. 6 (1972), 543–560. 10.4310/jdg/1214430642Search in Google Scholar

[9] A. Borel and L. Ji, Compactifications of symmetric and locally symmetric spaces, Math. Theory Appl., Birkhäuser, Boston 2006. 10.4310/jdg/1146169912Search in Google Scholar

[10] E. Brieskorn, Die Milnorgitter der exzeptionellen unimodularen Singularitäten, Bonner Math. Schriften 150, Universität Bonn, Bonn 1983. Search in Google Scholar

[11] T. D. Browning and R. Dietmann, On the representation of integers by quadratic forms, Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 389–416. 10.1112/plms/pdm032Search in Google Scholar

[12] J. H. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors, Lecture Notes in Math. 1780, Springer, Berlin 2002. 10.1007/b83278Search in Google Scholar

[13] J. H. Bruinier and M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. 10.1007/s229-001-8027-1Search in Google Scholar

[14] J. Carlson, S. Müller-Stach and C. Peters, Period mappings and period domains, Cambridge Stud. Adv. Math. 85, Cambridge University Press, Cambridge 2003. Search in Google Scholar

[15] F. Charles, Exceptional isogenies between reductions of pairs of elliptic curves, Duke Math. J. 167 (2018), no. 11, 2039–2072. 10.1215/00127094-2018-0011Search in Google Scholar

[16] L. Clozel and E. Ullmo, Équidistribution de sous-variétés spéciales, Ann. of Math. (2) 161 (2005), no. 3, 1571–1588. 10.4007/annals.2005.161.1571Search in Google Scholar

[17] P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206–226. 10.1007/BF01404126Search in Google Scholar

[18] A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. J. 135 (2006), no. 3, 481–506. 10.1215/S0012-7094-06-13533-0Search in Google Scholar

[19] A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel’s weight formula, Int. Math. Res. Not. IMRN 1991 (1991), no. 5, 65–69. 10.1155/S1073792891000090Search in Google Scholar

[20] M. Goresky and W. Pardon, Chern classes of automorphic vector bundles, Invent. Math. 147 (2002), no. 3, 561–612. 10.1007/s002220100184Search in Google Scholar

[21] S. Filip, Counting special Lagrangian fibrations in twistor families of K3 surfaces, preprint (2016), https://arxiv.org/abs/1612.08684. Search in Google Scholar

[22] P. Griffiths, Topics in algebraic and analytic geometry, Princeton University Press, Princeton 1974. Search in Google Scholar

[23] V. Gritsenko, K. Hulek and G. K. Sankaran, Moduli spaces of irreducible symplectic manifolds, Compos. Math. 146 (2010), no. 2, 404–434. 10.1112/S0010437X0900445XSearch in Google Scholar

[24] V. Gritsenko, K. Hulek and G. K. Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM) 24, International Press, Somerville (2013), 459–526. Search in Google Scholar

[25] S. U. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math. 12, Academic Press, New York 1962. Search in Google Scholar

[26] D. Huybrechts, Compact hyperkähler manifolds, Calabi–Yau manifolds and related geometries (Nordfjordeid 2001), Universitext, Springer, Berlin (2003), 161–225. 10.1007/978-3-642-19004-9_3Search in Google Scholar

[27] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University Press, Cambridge 2016. 10.1017/CBO9781316594193Search in Google Scholar

[28] O. Imamoğlu, M. Raum and O. K. Richter, Holomorphic projections and Ramanujan’s mock theta functions, Proc. Natl. Acad. Sci. USA 111 (2014), no. 11, 3961–3967. 10.1073/pnas.1311621111Search in Google Scholar PubMed PubMed Central

[29] H. Iwaniec, Topics in classical automorphic forms, Grad. Stud. Math. 17, American Mathematical Society, Providence 1997. 10.1090/gsm/017Search in Google Scholar

[30] F. Martin and E. Royer, Formes modulaires et périodes, Formes modulaires et transcendance, Sémin. Congr. 12, Société Mathématique de France, Paris (2005), 1–117. 10.1016/j.jnt.2005.05.007Search in Google Scholar

[31] D. Maulik, Supersingular K3 surfaces for large primes, Duke Math. J. 163 (2014), no. 13, 2357–2425; With an appendix by Andrew Snowden. 10.1215/00127094-2804783Search in Google Scholar

[32] W. J. McGraw, The rationality of vector valued modular forms associated with the Weil representation, Math. Ann. 326 (2003), no. 1, 105–122. 10.1007/s00208-003-0413-1Search in Google Scholar

[33] K. Oguiso, Local families of K3 surfaces and applications, J. Algebraic Geom. 12 (2003), no. 3, 405–433. 10.1090/S1056-3911-03-00362-XSearch in Google Scholar

[34] H. Oh, Hardy–Littlewood system and representations of integers by an invariant polynomial, Geom. Funct. Anal. 14 (2004), no. 4, 791–809. 10.1007/s00039-004-0475-6Search in Google Scholar

[35] A. Peterson, Modular forms on the moduli space of polarised K3 surfaces, PhD thesis, Korteweg-de Vries Institute for Mathematics, 2015. Search in Google Scholar

[36] P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math. 99, Cambridge University Press, Cambridge 1990. 10.1017/CBO9780511895593Search in Google Scholar

[37] W. Schmid, Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211–319. 10.1007/BF01389674Search in Google Scholar

[38] J.-P. Serre, Cours d’arithmétique, Presses Universitaires de France, Paris 1977. Search in Google Scholar

[39] A. N. Shankar and Y. Tang, Exceptional splitting of reductions of abelian surfaces, preprint (2017), https://arxiv.org/abs/1706.08154. 10.1215/00127094-2019-0046Search in Google Scholar

[40] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606. 10.1007/978-3-662-28697-5_20Search in Google Scholar

[41] R. C. Vaughan, The Hardy–Littlewood method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge University Press, Cambridge 1997. 10.1017/CBO9780511470929Search in Google Scholar

[42] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spéc. 10, Société Mathématique de France, Paris 2002; Deuxième édition revue et corrigée, Le Mathématicien, No. 2. Search in Google Scholar

[43] A. Yafaev, The André–Oort conjecture—a survey, L-functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge University Press, Cambridge (2007), 381–406. 10.1017/CBO9780511721267.011Search in Google Scholar

[44] S. Zucker, Locally homogeneous variations of Hodge structure, Enseign. Math. (2) 27 (1981), no. 3–4, 243–276. Search in Google Scholar

Received: 2018-10-08
Revised: 2018-10-24
Published Online: 2018-11-09
Published in Print: 2020-05-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2018-0026/html
Scroll to top button