Home Twisted cubics on cubic fourfolds
Article
Licensed
Unlicensed Requires Authentication

Twisted cubics on cubic fourfolds

  • Christian Lehn EMAIL logo , Manfred Lehn , Christoph Sorger and Duco van Straten
Published/Copyright: April 28, 2015

Abstract

We construct a new twenty-dimensional family of projective eight-dimensional irreducible holomorphic symplectic manifolds: the compactified moduli space M3(Y) of twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be smooth and to admit a contraction M3(Y)Z(Y) to a projective eight-dimensional symplectic manifold Z(Y). The construction is based on results on linear determinantal representations of singular cubic surfaces.

Award Identifier / Grant number: Le 3093/1-1; SFB Transregio 45 Bonn-Mainz-Essen

Funding statement: The first-named author was supported by the ANR program VHSMOD, Grenoble, the Labex Irmia, Strasbourg, and, during the revision of the article, by the DFG through the research grant Le 3093/1-1. The third-named author would like to thank the SFB Transregio 45 Bonn-Mainz-Essen and the Max-Planck-Institut für Mathematik Bonn for their hospitality.

Acknowledgements

This project got launched when L. Manivel pointed out to one of us that the natural morphism M3(Y)Grass(6,4) to the Grassmannian admits a Stein factorisation M3(Y)ZSteinGrass(6,4) such that ZSteinGrass(6,4) has degree 72. We are very grateful to him for sharing this idea with us. We have profited from discussions with C. von Bothmer, I. Dolgachev, E. Looijenga and L. Manivel.

References

[1] N. Addington and M. Lehn, On the symplectic eightfold associated to a Pfaffian cubic fourfold, J. reine angew. Math. 731 (2017), 129–137. 10.1515/crelle-2014-0145Search in Google Scholar

[2] M. Artin, On isolated rational singularities of surfaces, Am. J. Math. 88 (1966), 129–136. 10.2307/2373050Search in Google Scholar

[3] M. Auslander and R.-O. Buchweitz, The homological theory of maximal Cohen–Macaulay approximations, in: Colloque en l’honneur de Pierre Samuel (Orsay 1987), Mém. Soc. Math. Fr. (N.S.) 38 (1989), 5–37. 10.24033/msmf.339Search in Google Scholar

[4] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983), 755–782. 10.4310/jdg/1214438181Search in Google Scholar

[5] A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. 10.1307/mmj/1030132707Search in Google Scholar

[6] A. Beauville, Moduli of cubic surfaces and Hodge theory (after Allcock, Carlson, Toledo), Géométries à courbure négative ou nulle, groupes discrets et rigidités, Séminaires et Congrès 18, Société Mathématique de France, Paris (2009), 445–466. Search in Google Scholar

[7] A. Beauville and R. Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C.R. Acad. Science Paris 301 (1982), 703–706. Search in Google Scholar

[8] N. Bourbaki, Groupes et algèbres de Lie, Chapitre VI, Masson, Paris 1981. Search in Google Scholar

[9] J. W. Bruce and C. T. C. Wall, On the classification of cubic surfaces, J. London Math. Soc. 19 (1979), 245–256. 10.1112/jlms/s2-19.2.245Search in Google Scholar

[10] J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math. 48 (2004), 415–450. 10.1215/ijm/1242414134Search in Google Scholar

[11] M. Demazure, Surface de Del Pezzo I–IV, Séminaire sur les singularités des surfaces, Lecture Notes in Math. 777, Springer, Berlin (1980), 21–69. 10.1007/BFb0085875Search in Google Scholar

[12] I. Dolgachev, Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge 2012. 10.1017/CBO9781139084437Search in Google Scholar

[13] J. M. Drezet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur 2(), J. reine angew. Math. 380 (1987), 14–58. 10.1515/crll.1987.380.14Search in Google Scholar

[14] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1981), 35–64. 10.1090/S0002-9947-1980-0570778-7Search in Google Scholar

[15] G. Ellingsrud, R. Piene and S. A. Strømme, On the variety of nets of quadrics defining twisted curves, Space curves, Lecture Notes in Math. 1266, Springer, Berlin (1987), 84–96. 10.1007/BFb0078179Search in Google Scholar

[16] G. Ellingsrud and S. A. Strømme, The number of twisted cubic curves on the general quintic threefold, Math. Scand. 76 (1995), 5–34. 10.7146/math.scand.a-12522Search in Google Scholar

[17] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193–207. 10.1007/BF01453572Search in Google Scholar

[18] A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. de l’IHES 11 (1961), 5–167. 10.1007/BF02684273Search in Google Scholar

[19] J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71–84. 10.1016/0040-9383(84)90026-0Search in Google Scholar

[20] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, Berlin 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar

[21] A. Henderson, The twenty-seven lines upon the cubic surface, Hafner Publishing Company, New York 1911. Search in Google Scholar

[22] K. Hulek, On the classification of stable rank-r vector bundles over the projective plane, Vector bundles and differential equations (Nice 1979), Progr. Math. 7, Birkhäuser, Boston (1980), 113–144., 10.1007/978-1-4684-9415-0_6Search in Google Scholar

[23] J. Humphreys, Reflection groups and coxeter groups, Cambridge University Press, Cambridge 1972. Search in Google Scholar

[24] S. L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), 293–344. 10.2307/1970447Search in Google Scholar

[25] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Search in Google Scholar

[26] M. Lehn and C. Sorger, Chow. A SAGE package for computations in intersection theory, www.math.sciences.univ-nantes.fr/~sorger/chow. Search in Google Scholar

[27] E. Looijenga, On the semi-universal deformation of a simple elliptic hypersurfaces singularity. II: The discriminant, Topology 17 (1978), 23–40. 10.1016/0040-9383(78)90010-1Search in Google Scholar

[28] K. Matsuki, Introduction to the Mori program, Universitext, Springer, New York 2002. 10.1007/978-1-4757-5602-9Search in Google Scholar

[29] D. Mumford and J. Fogarty, Geometric invariant theory, 2nd ed., Ergeb. Math. Grenzgeb. 34, Springer, Berlin 1982. 10.1007/978-3-642-96676-7Search in Google Scholar

[30] P. Newstead, Lectures on introduction to moduli problems and orbit spaces, Tata Inst. Fund. Res. Stud. Math. 51, Springer, Berlin 1978. Search in Google Scholar

[31] R. Piene and M. Schlessinger, On the Hilbert scheme compactification of the space of twisted cubics, Amer. J. Math. 107 (1985), no. 4, 761–774. 10.2307/2374355Search in Google Scholar

[32] K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289–325. 10.1007/BF01389749Search in Google Scholar

[33] L. Schläfli, On the distribution of surfaces of the third order into species, Phil. Trans. Roy. Soc. 153 (1864), 193–247. 10.1098/rstl.1863.0010Search in Google Scholar

[34] C. T. C. Wall, Root systems, subsystems and singularities, J. Alg. Geom. 1 (1992), 597–638. Search in Google Scholar

Received: 2013-10-9
Revised: 2014-9-15
Published Online: 2015-4-28
Published in Print: 2017-10-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0144/html
Scroll to top button