Home Arbitrarily large residual finiteness growth
Article
Licensed
Unlicensed Requires Authentication

Arbitrarily large residual finiteness growth

  • Khalid Bou-Rabee EMAIL logo and Brandon Seward
Published/Copyright: February 5, 2014

Abstract

The residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. In this paper, we construct groups with arbitrarily large residual finiteness growth. We also demonstrate a new relationship between residual finiteness growth and some decision problems in groups, which we apply to our new groups.

Funding source: NSF RTG

Award Identifier / Grant number: DMS-1045119

Funding source: NSF Graduate Student Research Fellowship

Award Identifier / Grant number: DGE 0718128

The first author is grateful to Benson Farb and Ben McReynolds for their endless support and great ideas. The second author would like to thank Jay Williams for an insightful discussion of Neumann's construction.

Received: 2013-5-8
Revised: 2013-10-12
Published Online: 2014-2-5
Published in Print: 2016-1-1

© 2016 by De Gruyter

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2013-0127/html
Scroll to top button