Empirical modelling of physicochemical properties of carbon capture solvent-aqueous 2-amino-2-methyl-1-propanol (AMP)
Abstract
This study delves into the physicochemical properties of aqueous AMP solutions, examining how varying concentrations and temperatures affect their behavior. Understanding these properties is crucial for optimizing AMP’s use in various industrial applications, from pharmaceuticals to food processing. Our findings reveal that density (ρ) decreases from 1.095 g/ml at 10 wt% and 283 K to 1.014 g/ml at 50 wt% and 333 K, showcasing significant thermal expansion effects. We also observed that the excess molar volume contracts, particularly at higher concentrations, indicating stronger solute–solvent interactions. Viscosity (μ) increases from 1.71 mPa s at 10 wt% and 283 K to 6.78 mPa s at 50 wt% and 283 K, while it decreases with temperature, highlighting how molecular motion enhances flow. Additionally, surface tension (σ) drops from 46.95 mN/m at 10 wt% and 283 K to 37.27 mN/m at 50 wt% and 333 K, reflecting the disruption of cohesive forces among water molecules. Our statistical analysis confirms the importance of concentration in shaping these properties, with high R2 values (ρ = 96.67 %, μ = 95.72 %, σ = 86.19 %) and parity charts demonstrating impressive model accuracy, exceeding 99 % for density and 95 % for viscosity.
Acknowledgments
The authors acknowledge the financial support of the Department of Science and Technology, Mission Innovation – Innovation Challenge (IC#3) CCUS Project F. No. DST/TM/EWO/MI/CCUS Project/25 (G1) Government of India, Ministry of Science &; Technology, TMD (Energy, Water &; Others), Technology Bhavan, New Delhi.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: SB – Methodology, Validation, Investigation, Data curation. SR – Methodology, Formal Analysis, Investigation, Data curation, Writing – Original Draft. AB – Conceptualization, Methodology, Resources, Writing – Original Draft, Writing – Review & Editing, Project Administration. SV – Validation, Visualization.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
1. Bernhardsen, IM, Knuutila, HK. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenh Gas Control 2017;61. https://doi.org/10.1016/j.ijggc.2017.03.021.Suche in Google Scholar
2. Gautam, A, Mondal, MK. Review of recent trends and various techniques for CO2 capture: special emphasis on biphasic amine solvents. Fuel 2023;334. https://doi.org/10.1016/j.fuel.2022.126616.Suche in Google Scholar
3. Singla, Y, Thakur, A, Sud, D. A comprehensive review on carbon capturing materials and processes for sustainable development. Mater Today Energy 2025;48:101783. https://doi.org/10.1016/J.MTENER.2024.101783.Suche in Google Scholar
4. Rochelle, GT. Amine scrubbing for CO2 capture. Science 2009;80:325. https://doi.org/10.1126/science.1176731.Suche in Google Scholar PubMed
5. Pereira, LMC, Vega, LF. A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models. Appl Energy 2018;232. https://doi.org/10.1016/j.apenergy.2018.09.189.Suche in Google Scholar
6. Abu-Zahra, MRM, Niederer, JPM, Feron, PHM, Versteeg, GF. CO2 capture from power plants. Part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenh Gas Control 2007;1. https://doi.org/10.1016/S1750-5836(07)00032-1.Suche in Google Scholar
7. Gerbelová, H, Versteeg, P, Ioakimidis, CS, Ferrão, P. The effect of retrofitting Portuguese fossil fuel power plants with CCS. Appl Energy 2013;101. https://doi.org/10.1016/j.apenergy.2012.04.014.Suche in Google Scholar
8. Bui, M, Adjiman, CS, Bardow, A, Anthony, EJ, Boston, A, Brown, S, et al.. Carbon capture and storage (CCS): the way forward. Energy Environ Sci 2018;11. https://doi.org/10.1039/c7ee02342a.Suche in Google Scholar
9. Papadopoulos, AI, Tzirakis, F, Tsivintzelis, I, Seferlis, P. Phase-change solvents and processes for postcombustion CO2 capture: a detailed review. Ind Eng Chem Res 2019;58. https://doi.org/10.1021/acs.iecr.8b06279.Suche in Google Scholar
10. Rama, S, Zhang, Y, Tchuenbou-Magaia, F, Ding, Y, Li, Y. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture. Front Chem Sci Eng 2019;13. https://doi.org/10.1007/s11705-019-1856-6.Suche in Google Scholar
11. Bihong, L, Kexuan, Y, Xiaobin, Z, Zuoming, Z, Guohua, J. 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture. Appl Energy 2020;264. https://doi.org/10.1016/j.apenergy.2020.114703.Suche in Google Scholar
12. Nwaoha, C, Saiwan, C, Tontiwachwuthikul, P, Supap, T, Rongwong, W, Idem, R, et al.. Carbon dioxide (CO2) capture: absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J Nat Gas Sci Eng 2016;33:742–50. https://doi.org/10.1016/j.jngse.2016.06.002.Suche in Google Scholar
13. Nwaoha, C, Tontiwachwuthikul, P, Benamor, A. CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: a pilot plant study. J Environ Chem Eng 2018;6. https://doi.org/10.1016/j.jece.2018.11.007.Suche in Google Scholar
14. Thamsiriprideeporn, C, Tetsuya, S. Development of CO2 absorption using blended alkanolamine absorbents for multicycle integrated absorption–mineralization. Minerals 2023;13. https://doi.org/10.3390/min13040487.Suche in Google Scholar
15. Kontos, G, Soldatou, MA, Tzimpilis, E, Tsivintzelis, I. Solubility of CO2 in 2-amino-2-methyl-1-propanol (AMP) and 3-(methylamino)propylamine (MAPA): experimental investigation and modeling with the Cubic-Plus-Association and the modified Kent-Eisenberg models. Separations 2022;9. https://doi.org/10.3390/separations9110338.Suche in Google Scholar
16. Osagie, E. Evaluation of emissions of 2-amino-2-methyl-1-propanol degradation products by adding degradation reactions to the carbon dioxide capture unit. J Appl Sci Environ Manag 2021;24:1993–8. https://doi.org/10.4314/jasem.v24i11.21.Suche in Google Scholar
17. Karlsson, HK, Makhool, H, Karlsson, M, Svensson, H. Chemical absorption of carbon dioxide in non-aqueous systems using the amine 2-amino-2-methyl-1-propanol in dimethyl sulfoxide and N-methyl-2-pyrrolidone. Sep Purif Technol 2021;256. https://doi.org/10.1016/j.seppur.2020.117789.Suche in Google Scholar
18. Barbarossa, V, Barzagli, F, Mani, F, Lai, S, Stoppioni, P, Vanga, G. Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration. RSC Adv 2013;3. https://doi.org/10.1039/c3ra40933c.Suche in Google Scholar
19. Parks, CM, Hughes, KJ, Pourkashanian, M. Modeling AMP degradation product formation. Ind Eng Chem Res 2021;60. https://doi.org/10.1021/acs.iecr.1c03963.Suche in Google Scholar
20. Sahoo, PC, Kumar, R, Kumar, M, Kumar Puri, S, Ramakumar, SSV. Rational design of a porous gel encapsulated bio-hybrid solvent for accelerated CO2 capture and low energy stripping. Int J Greenh Gas Control 2019;90. https://doi.org/10.1016/j.ijggc.2019.102785.Suche in Google Scholar
21. Wang, T, Jens, KJ. Oxidative degradation of aqueous PZ solution and AMP/PZ blends for post-combustion carbon dioxide capture. Int J Greenh Gas Control 2014;24. https://doi.org/10.1016/j.ijggc.2014.03.003.Suche in Google Scholar
22. Shokouhi, M, Jalili, AH, Samani, F, Hosseini-Jenab, M. Experimental investigation of the density and viscosity of CO2-loaded aqueous alkanolamine solutions. Fluid Phase Equilib 2015;404. https://doi.org/10.1016/j.fluid.2015.06.034.Suche in Google Scholar
23. Perumal, M, Karunakaran, NR, Balraj, A, Jayaraman, D, Krishnan, J, Prakash, ABJ, et al.. Experimental investigation on CO2 absorption and physicochemical characteristics of different carbon-loaded aqueous solvents. Environ Sci Pollut Res 2020;2015. https://doi.org/10.1007/s11356-020-10562-0.Suche in Google Scholar PubMed
24. Rezaei, A, Pakzad, P, Mofarahi, M, Izadpanah, AA, Afkhamipour, M, Lee, CH. Densities and viscosities of binary and ternary solutions of triethylenetetramine, 2-amino-2-methyl-1-propanol, and water for carbon dioxide capture. J Chem Eng Data 2021;66. https://doi.org/10.1021/acs.jced.0c01052.Suche in Google Scholar
25. Morlando, D, Hartono, A, Knuutila, HK. Density and viscosity of CO2-loaded aqueous 2-amino-2-methyl-1-propanol (AMP) and piperazine (PZ) mixtures. J Chem Eng Data 2025;70:196–207. https://doi.org/10.1021/acs.jced.4c00403.Suche in Google Scholar PubMed PubMed Central
26. Samanta, A, Bandyopadhyay, SS. Density and viscosity of aqueous solutions of piperazine and (2-amino-2-methyl-1-propanol + piperazine) from 298 to 333 K. J Chem Eng Data 2006;51. https://doi.org/10.1021/je050378i.Suche in Google Scholar
27. Karunarathne, SS, Eimer, DA, Jens, KJ, øi, LE. Density, viscosity, and excess properties of ternary aqueous mixtures of MDEA + MEA, DMEA + MEA, and DEEA + MEA. Fluids 2020;5. https://doi.org/10.3390/fluids5010027.Suche in Google Scholar
28. Karunarathne, SS, Chhantyal, K, Eimer, DA, Øi, LE. Artificial neural networks (ANNs) for density and viscosity predictions of CO2 loaded alkanolamine + H2O mixtures. ChemEngineering 2020;4. https://doi.org/10.3390/chemengineering4020029.Suche in Google Scholar
29. Paul, S, Mandal, B. Density and viscosity of aqueous solutions of (2-piperidineethanol + piperazine) from (288 to 333) K and surface tension of aqueous solutions of (N-methyldiethanolamine + piperazine), (2-amino-2-methyl-1-propanol + piperazine), and (2-piperidineethanol + piperazine) from (293 to 323) K. J Chem Eng Data 2006;51. https://doi.org/10.1021/je0603271.Suche in Google Scholar
30. Karunarathne, SS, Eimer, DA, Øi, LE. Density, viscosity and free energy of activation for viscous flow of CO2 loaded 2-amino-2-methyl-1-propanol (AMP), monoethanol amine (MEA) and H2O mixtures. J Mol Liq 2020;311. https://doi.org/10.1016/j.molliq.2020.113286.Suche in Google Scholar
31. Dash, SK, Parikh, R, Kaul, D. Development of efficient absorbent for CO2 capture process based on (AMP + 1MPZ). Mater Today Proc 2022;62. https://doi.org/10.1016/j.matpr.2022.01.148.Suche in Google Scholar
32. Sanku, MG, Svensson, H. Modelling the precipitating non-aqueous CO2 capture system AMP-NMP, using the unsymmetric electrolyte NRTL. Int J Greenh Gas Control 2019;89. https://doi.org/10.1016/j.ijggc.2019.07.006.Suche in Google Scholar
33. Zheng, L, Matin, NS, Thompson, J, Landon, J, Holubowitch, NE, Liu, K. Understanding the corrosion of CO2-loaded 2-amino-2-methyl-1-propanol solutions assisted by thermodynamic modeling. Int J Greenh Gas Control 2016;54. https://doi.org/10.1016/j.ijggc.2016.09.005.Suche in Google Scholar
34. Safdar, R, Omar, AA, Ismail, LB, Bari, A, Lal, B. Measurement and correlation of physical properties of aqueous solutions of tetrabutylammonium hydroxide, piperazine and their aqueous blends. Chinese J Chem Eng 2015;23. https://doi.org/10.1016/j.cjche.2015.08.006.Suche in Google Scholar
35. Mahajan, AR, Mirgane, SR. Excess molar volumes and viscosities for the binary mixtures of n-octane, n-decane, n-dodecane, and n-tetradecane with octan-2-ol at 298.15 K. J. Thermodynamics 2013;1. https://doi.org/10.1155/2013/571918.Suche in Google Scholar
36. Vural, US, Durmaz, F, Kocyigit, O, Kocyigit, H, Muradoglu, V, Akin, B. Excess molar volumes, viscosity, refractive index, and Gibbs energy of activation of binary biodiesel + benzene, and biodiesel + toluene mixtures at 298.15 and 303.15 K. Russ J Phys Chem A 2008;82. https://doi.org/10.1134/S0036024408130189.Suche in Google Scholar
37. Palaian Premalalitha, P, Balraj, A. Low-temperature dielectric heating-assisted CO2 stripping/solvent regeneration of aqueous carbon-rich monoethanolamine, piperazine, and 2-amino-2-methyl-1-propanol solvents. Ind Eng Chem Res 2024;63. https://doi.org/10.1021/acs.iecr.3c03671.Suche in Google Scholar
38. Stec, M, Spietz, T, Więcław-Solny, L, Tatarczuk, A, Wilk, A, Sobolewski, A. Density of unloaded and CO2-loaded aqueous solutions of piperazine and 2-amino-2-methyl-1-propanol and their mixtures from 293.15 to 333.15 K. Phys Chem Liq 2016;54. https://doi.org/10.1080/00319104.2015.1115328.Suche in Google Scholar
39. Li, Z, Zhao, D, Zhuang, Y, Yang, F, Liu, X, Chen, Y. Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa. J Chem Thermodyn 2019;133. https://doi.org/10.1016/j.jct.2019.01.025.Suche in Google Scholar
40. Zailani, NHZO, Yunus, NM, Rahim, AHA, Bustam, MA. Thermophysical properties of newly synthesized ammonium-based protic ionic liquids: effect of temperature, anion and alkyl chain length. Processes 2020;8. https://doi.org/10.3390/pr8060742.Suche in Google Scholar
41. Guo, H, Dong, Y, Ping, T, Shi, X, Shen, S. Density, viscosity and excess properties of binary mixtures of monoethanolamine and 2-alkoxyethanols at temperatures from (293.15 to 353.15) K. J Mol Liq 2020;299. https://doi.org/10.1016/j.molliq.2019.112191.Suche in Google Scholar
42. Adam, OEAA, Awwad, AM. Estimation of excess molar volumes and theoretical viscosities of binary mixtures of benzene + n-alkanes at 298.15 K. Int J Ind Chem 2016;7. https://doi.org/10.1007/s40090-016-0100-1.Suche in Google Scholar
43. Kartikawati, NA, Safdar, R, Lal, B, Mutalib, MIBA, Shariff, AM. Measurement and correlation of the physical properties of aqueous solutions of ammonium based ionic liquids. J Mol Liq 2018;253. https://doi.org/10.1016/j.molliq.2018.01.040.Suche in Google Scholar
44. Dey, A, Dash, SK, Mandal, B. Equilibrium CO2 solubility and thermophysical properties of aqueous blends of 1-(2-aminoethyl) piperazine and N-methyldiethanolamine. Fluid Phase Equilib 2018;463. https://doi.org/10.1016/j.fluid.2018.01.030.Suche in Google Scholar
45. Murshid, G, Shariff, AM, Keong, LK, Bustam, MA. Thermo physical analysis of 2-amino-2-methyl-lpropanol solvent for carbon dioxide removal. Chem. Eng. Trans. 2011;25:45–50. https://doi.org/10.3303/CET1125008.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston