A review on the synthesis, properties, and applications of Janus nanoparticles
-
Rallabandi Pattabhi Ramaraju
, Pachimatla Rajesh
Abstract
Janus nanoparticles (JNPs) are distinguished by their dual-faced structure, where each side exhibits distinct physical, chemical, or functional properties. This asymmetry enables JNPs to perform multiple roles simultaneously, making them highly versatile for drug delivery, biosensing, bioimaging, and environmental remediation applications. Synthesis methods such as masking, self-assembly, phase separation, and selective surface modification allow precise control over JNP morphology and functionality, enabling tailored properties like amphiphilic surfaces, magnetic or fluorescent domains, and hybrid compositions. Characterization tools such as SEM, TEM, and XRD mapping are crucial for understanding their structural and compositional attributes, facilitating optimization for specific applications. In biomedicine, JNPs show promise in targeted drug delivery, bioimaging, and theranostics, combining diagnostic and therapeutic capabilities. In environmental engineering, they are effective in water decontamination and removing heavy metals from contaminated water. This review provides a comprehensive overview of synthesis strategies, characterization techniques, applications, and critical analysis of JNPs, highlighting recent advancements and future directions to overcome the challenges.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Zhou, H, Cai, W, Li, J, Wu, D. Visual monitoring of polystyrene nanoplastics < 100 nm in drinking water based on functionalized gold nanoparticles. Sens Actuator B Chem 2023;392:134099. https://doi.org/10.1016/j.snb.2023.134099.Search in Google Scholar
2. Safaie, N, Ferrier, RC. Janus nanoparticle synthesis: overview, recent developments, and applications. J Appl Phys 2020;127:170902. https://doi.org/10.1063/5.0003329.Search in Google Scholar
3. Reguera, J, Kim, H, Stellacci, F. Advances in Janus nanoparticles. Chimia 2013;67:811. https://doi.org/10.2533/chimia.2013.811.Search in Google Scholar PubMed
4. Su, H, Hurd Price, C-A, Jing, L, Tian, Q, Liu, J, Qian, K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019;4:100033. https://doi.org/10.1016/j.mtbio.2019.100033.Search in Google Scholar PubMed PubMed Central
5. Ali, N, Zhang, B, Zhang, H, Zaman, W, Li, W, Zhang, Q. Key synthesis of magnetic Janus nanoparticles using a modified facile method. Particuology 2014;17:59–65. https://doi.org/10.1016/j.partic.2014.02.001.Search in Google Scholar
6. Sardar, R, Heap, TB, Shumaker-Parry, JS. Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. J Am Chem Soc 2007;129:5356–7. https://doi.org/10.1021/ja070933w.Search in Google Scholar PubMed
7. Gu, H, Zheng, R, Zhang, X, Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 2004;126:5664–5. https://doi.org/10.1021/ja0496423.Search in Google Scholar PubMed
8. Pradhan, S, Xu, L, Chen, S. Janus nanoparticles by interfacial engineering. Adv Funct Mater 2007;17:2385–92. https://doi.org/10.1002/adfm.200601034.Search in Google Scholar
9. Hong, L, Jiang, S, Granick, S. Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006;22:9495–9. https://doi.org/10.1021/la062716z.Search in Google Scholar PubMed
10. Ji, J, Fuji, M, Watanabe, H, Shirai, T. Partially functionalized Janus ZnO spheres prepared by protecting mask techniques. Colloids Surf A Physicochem Eng Asp 2012;393:6–10. https://doi.org/10.1016/j.colsurfa.2011.09.042.Search in Google Scholar
11. Reguera, J, Flora, T, Winckelmans, N, Rodríguez-Cabello, JC, Bals, S. Self-assembly of Janus Au:Fe3 O4 branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures. Nanoscale Adv 2020;2:2525–30. https://doi.org/10.1039/D0NA00102C.Search in Google Scholar PubMed PubMed Central
12. Percec, V, Leowanawat, P, Sun, H-J, Kulikov, O, Nusbaum, CD, Tran, TM, et al.. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 2013;135:9055–77. https://doi.org/10.1021/ja403323y.Search in Google Scholar PubMed
13. Walther, A, Müller, AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 2013;113:5194–261. https://doi.org/10.1021/cr300089t.Search in Google Scholar PubMed
14. Jiang, S, Chen, Q, Tripathy, M, Luijten, E, Schweizer, KS, Granick, S. Janus particle synthesis and assembly. Adv Mater 2010;22:1060–71. https://doi.org/10.1002/adma.200904094.Search in Google Scholar PubMed
15. Biswas, S, Pramanik, S, Mandal, S, Sarkar, S, Chaudhuri, S, De, S. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Front Mater Sci 2020;14:24–32. https://doi.org/10.1007/s11706-020-0496-6.Search in Google Scholar
16. Dai, X, Zhao, X, Liu, Y, Chen, B, Ding, X, Zhao, N, et al.. Controlled synthesis and surface engineering of Janus chitosan‐gold nanoparticles for photoacoustic imaging‐guided synergistic gene/photothermal therapy. Small 2021;17:2006004. https://doi.org/10.1002/smll.202006004.Search in Google Scholar PubMed
17. Wang, Y, Ji, X, Pang, P, Shi, Y, Dai, J, Xu, J, et al.. Synthesis of Janus Au nanorods/polydivinylbenzene hybrid nanoparticles for chemo-photothermal therapy. J Mater Chem B 2018;6:2481–8. https://doi.org/10.1039/C8TB00233A.Search in Google Scholar
18. Saeedi Dehaghani, AH, Gharibshahi, R, Mohammadi, M. Utilization of synthesized silane-based silica Janus nanoparticles to improve foam stability applicable in oil production: static study. Sci Rep 2023;13:18652. https://doi.org/10.1038/s41598-023-46030-1.Search in Google Scholar PubMed PubMed Central
19. Yu, Y, Lin, R, Yu, H, Liu, M, Xing, E, Wang, W, et al.. Versatile synthesis of metal-compound-based mesoporous Janus nanoparticles. Nat Commun 2023;14:4249. https://doi.org/10.1038/s41467-023-40017-2.Search in Google Scholar PubMed PubMed Central
20. Du, Y, Zhang, X, Li, Y. Solvents induce phase separation for fabrication of Janus hybrid nanoparticles: a dissipative particle dynamics simulation. Comput Mater Sci 2018;141:221–8. https://doi.org/10.1016/j.commatsci.2017.09.038.Search in Google Scholar
21. Krekhov, A, Weith, V, Zimmermann, W. Periodic structures in binary mixtures enforced by Janus particles. Phys Rev E 2013;88:040302. https://doi.org/10.1103/PhysRevE.88.040302.Search in Google Scholar PubMed
22. Pankaj, P, Bhattacharya, S, Chatterjee, S. Competition of core-shell and janus morphology in alloy nanoparticles: insights from a phase-field model. Acta Mater 2022;233:117933. https://doi.org/10.1016/j.actamat.2022.117933.Search in Google Scholar
23. Sciortino, F, Giacometti, A, Pastore, G. Phase diagram of Janus particles. Phys Rev Lett 2009;103:237801. https://doi.org/10.1103/PhysRevLett.103.237801.Search in Google Scholar PubMed
24. Gharehbaba, AM, Omidi, Y, Barar, J, Eskandani, M, Adibkia, K. Innovative horizons in cancer therapy, imaging, and sensing with Janus nanoparticles: a comprehensive review. TrAC, Trends Anal Chem 2024;178:117822. https://doi.org/10.1016/j.trac.2024.117822.Search in Google Scholar
25. Huang, P, Huang, C, Sun, Y, Zhao, Z, Yang, L, Yang, H, et al.. Bio-inspired magnetically induced self-assembling Janus solar evaporator with antifouling and antiscaling properties. Chem Eng J 2024;501:157824. https://doi.org/10.1016/j.cej.2024.157824.Search in Google Scholar
26. Rahiminezhad, Z, Tamaddon, AM, Borandeh, S, Abolmaali, SS. Janus nanoparticles: new generation of multifunctional nanocarriers in drug delivery, bioimaging and theranostics. Appl Mater Today 2020;18:100513. https://doi.org/10.1016/j.apmt.2019.100513.Search in Google Scholar
27. Lv, H, Liu, Y, Zhao, P, Bai, Y, Cui, W, Shen, S, et al.. Insight into the superior piezophotocatalytic performance of BaTiO3//ZnO Janus nanofibrous heterostructures in the treatment of multi-pollutants from water. Appl Catal B Environ 2023;330:122623. https://doi.org/10.1016/j.apcatb.2023.122623.Search in Google Scholar
28. Yang, Z, Peng, X, Yang, P, Zhuo, Y, Chai, Y-Q, Liang, W, et al.. A Janus 3D DNA nanomachine for simultaneous and sensitive fluorescence detection and imaging of dual microRNAs in cancer cells. Chem Sci 2020;11:8482–8. https://doi.org/10.1039/D0SC02850A.Search in Google Scholar PubMed PubMed Central
29. He, Y, Teng, Y, Wu, Q, Zhang, G. “Ball-rod” shaped multifunctional magnetic Janus nanoparticles for efficient drug delivery. Colloids Surf A Physicochem Eng Asp 2024;701:134903. https://doi.org/10.1016/j.colsurfa.2024.134903.Search in Google Scholar
30. Li, Y, Yang, S, Lu, X, Duan, W, Moriga, T. Synthesis and evaluation of the SERS effect of Fe3 O4 –Ag Janus composite materials for separable, highly sensitive substrates. RSC Adv 2019;9:2877–84. https://doi.org/10.1039/C8RA09569H.Search in Google Scholar PubMed PubMed Central
31. Sánchez, A, Ovejero Paredes, K, Ruiz-Cabello, J, Martínez-Ruíz, P, Pingarrón, JM, Villalonga, R, et al.. Hybrid decorated Core@Shell janus nanoparticles as a flexible platform for targeted multimodal molecular bioimaging of cancer. ACS Appl Mater Interfaces 2018;10:31032–43. https://doi.org/10.1021/acsami.8b10452.Search in Google Scholar PubMed
32. Fu, J, Gu, Z, Liu, Y, Zhang, J, Song, H, Yang, Y, et al.. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem Sci 2019;10:10388–94. https://doi.org/10.1039/C9SC02961C.Search in Google Scholar
33. Nomoev, A, Bardakhanov, S, Schreiber, M, Bazarova, D, Baldanov, B, Romanov, N. Synthesis, characterization, and mechanism of formation of janus-like nanoparticles of tantalum silicide-silicon (TaSi2/Si). Nanomaterials 2014;5:26–35. https://doi.org/10.3390/nano5010026.Search in Google Scholar PubMed PubMed Central
34. Lizunova, AA, Borisov, VI, Malo, D, Musaev, AG, Kameneva, EI, Efimov, AA, et al.. Spark discharge synthesis and characterization of Ge/Sn Janus nanoparticles. Nanomaterials 2023;13:1701. https://doi.org/10.3390/nano13101701.Search in Google Scholar PubMed PubMed Central
35. Song, Y, Chen, S. Janus nanoparticles: preparation, characterization, and applications. Chem Asian J 2014;9:418–30. https://doi.org/10.1002/asia.201301398.Search in Google Scholar PubMed
36. Chen, Q, Wang, X, Wang, C, Feng, L, Li, Y, Liu, Z. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 2015;9:5223–33. https://doi.org/10.1021/acsnano.5b00640.Search in Google Scholar PubMed
37. Chu, S, Shi, X, Tian, Y, Gao, F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol 2022;12:855019. https://doi.org/10.3389/fonc.2022.855019.Search in Google Scholar PubMed PubMed Central
38. Zhang, P, Hu, L, Yin, Q, Feng, L, Li, Y. Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol Pharm 2012;9:1590–8. https://doi.org/10.1021/mp200600t.Search in Google Scholar PubMed
39. Wang, D, Dong, H, Li, M, Cao, Y, Yang, F, Zhang, K, et al.. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018;12:5241–52. https://doi.org/10.1021/acsnano.7b08355.Search in Google Scholar PubMed
40. Mohamed, IED, Ahmad, H, Abdul Rahman, MB, Gill, MR. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics 2021;13:152. https://doi.org/10.3390/pharmaceutics13020152.Search in Google Scholar PubMed PubMed Central
41. Wu, LY, Ross, BM, Hong, S, Lee, LP. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 2010;6:503–7. https://doi.org/10.1002/smll.200901604.Search in Google Scholar PubMed
42. Sotiriou, GA, Hirt, AM, Lozach, P-Y, Teleki, A, Krumeich, F, Pratsinis, SE. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chem Mater 2011;23:1985–92. https://doi.org/10.1021/cm200399t.Search in Google Scholar PubMed PubMed Central
43. Li, Z, Gao, Z, Wang, C, Zou, D, Zhou, H, Yi, Y, et al.. Recent progress on bioimaging strategies based on Janus nanoparticles. Nanoscale 2022;14:12560–8. https://doi.org/10.1039/D2NR03186H.Search in Google Scholar PubMed
44. Khoei, S, Khoee, S, Sadri, E, Mafakheri, F, Haji Ali, B, Shirvalilou, S. Fluorescence-based multimodal imaging for in vivo tracking of magnetite Janus nanoparticles as potential carriers for DOX under the alternating magnetic field: enhancing tumor penetration. J Drug Deliv Sci Technol 2025;106:106730. https://doi.org/10.1016/j.jddst.2025.106730.Search in Google Scholar
45. Park, JH, Dumani, DS, Arsiwala, A, Emelianov, S, Kane, RS. Tunable aggregation of gold-silica Janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo. Nanoscale 2018;10:15365–70. https://doi.org/10.1039/C8NR03973A.Search in Google Scholar
46. Bao, J, Liu, R, Yu, Z, Cheng, Z, Chang, B. Activatable janus nanoparticles for precise NIR‐II bioimaging and synergistic cancer therapy. Adv Funct Mater 2024;34:2316646. https://doi.org/10.1002/adfm.202316646.Search in Google Scholar
47. Du, Y, Li, Y, Aftenieva, O, Tsuda, T, Formanek, P, König, TAF, et al.. High yield synthesis of water‐processable donor:acceptor janus nanoparticles with tuned internal morphology and highly efficient charge separation/transfer. Adv Opt Mater 2022;10:2101922. https://doi.org/10.1002/adom.202101922.Search in Google Scholar
48. Du, Y, Wang, Y, Shamraienko, V, Pöschel, K, Synytska, A. Donor:Acceptor janus nanoparticle‐based films as photoactive layers: control of assembly and impact on performance of devices. Small 2023;19:2206907. https://doi.org/10.1002/smll.202206907.Search in Google Scholar PubMed
49. Liao, S, Sui, J, Chen, Q, Zhang, H, Li, B. Janus device based on liquid crystal regulation with a large incidence angle: analogous quantum optical effect and absorption. Ann Phys 2023;535:2300160. https://doi.org/10.1002/andp.202300160.Search in Google Scholar
50. Ahmad, W, Wang, Y, Kazmi, J, Younis, U, Mubarak, NM, Aleithan, SH, et al.. Janus 2D transition metal dichalcogenides: research progress, optical mechanism and future prospects for optoelectronic devices. Laser Photon Rev 2025;19:2400341. https://doi.org/10.1002/lpor.202400341.Search in Google Scholar
51. Walsh, FC. Janus particles: features, synthesis and potential uses, including surface functionalisation. Transactions of the IMF 2024;102:4–8. https://doi.org/10.1080/00202967.2023.2282846.Search in Google Scholar
52. Paniagua, G, Villalonga, A, Eguílaz, M, Vegas, B, Parrado, C, Rivas, G, et al.. Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. Anal Chim Acta 2019;1061:84–91. https://doi.org/10.1016/j.aca.2019.02.015.Search in Google Scholar PubMed
53. Kong, L, Rohaizad, N, Nasir, MZM, Guan, J, Pumera, M. Micromotor-assisted human serum glucose biosensing. Anal Chem 2019;91:5660–6. https://doi.org/10.1021/acs.analchem.8b05464.Search in Google Scholar PubMed
54. Wang, Y, Shang, M, Wang, Y, Xu, Z. Droplet-based microfluidic synthesis of (Au nanorod@Ag)–polyaniline Janus nanoparticles and their application as a surface-enhanced Raman scattering nanosensor for mercury detection. Anal Methods 2019;11:3966–73. https://doi.org/10.1039/C9AY01213C.Search in Google Scholar
55. Hu, Y, Xie, H, Hu, J, Yang, D. Disposable electrochemical aptasensor based on graphene oxide-DNA complex as signal amplifier towards ultrasensitive detection of ochratoxin A. Micromachines 2022;13:834. https://doi.org/10.3390/mi13060834.Search in Google Scholar PubMed PubMed Central
56. Yin, C, Luo, X, Ao, F, Chen, L, Liu, Y, Wang, J, et al.. Long-lifespan, biodegradable, self-disinfecting, and gas-sensing electronic mask with a Janus-structured all-natural fiber network for personal healthcare. Chem Eng J 2024;499:156607. https://doi.org/10.1016/j.cej.2024.156607.Search in Google Scholar
57. Pauli, O, Honciuc, A. Extraction of metal ions by interfacially active janus nanoparticles supported by wax colloidosomes obtained from pickering emulsions. Nanomaterials 2022;12:3738. https://doi.org/10.3390/nano12213738.Search in Google Scholar PubMed PubMed Central
58. Wang, Y, Huang, J, Zhang, Y, Zhang, S, Li, L, Pang, X. The design of PAN-based janus membrane with adjustable asymmetric wettability in wastewater purification. Materials 2024;17:417. https://doi.org/10.3390/ma17020417.Search in Google Scholar PubMed PubMed Central
59. Liu, L, Lan, H, Cui, Y, Tang, Q, Bai, J, An, X, et al.. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. Sci Adv 2024;10:eadn8696. https://doi.org/10.1126/sciadv.adn8696.Search in Google Scholar PubMed PubMed Central
60. Wang, D, Zhu, Y-L, Zhao, Y, Li, CY, Mukhopadhyay, A, Sun, Z-Y, et al.. Brownian diffusion of individual janus nanoparticles at water/oil interfaces. ACS Nano 2020;14:10095–103. https://doi.org/10.1021/acsnano.0c03291.Search in Google Scholar PubMed PubMed Central
61. Wang, X, Ma, Y, Huang, L, Li, Y, Wang, L, Chi, L. Machine learning-aided prediction of molecular self-assembly on metal surfaces. J Phys Chem C 2025;129:4434–42. https://doi.org/10.1021/acs.jpcc.5c00059.Search in Google Scholar
62. Bresme, F, Olarte-Plata, JD, Chapman, A, Albella, P, Green, C. Thermophoresis and thermal orientation of Janus nanoparticles in thermal fields. Eur Phys J E 2022;45:59. https://doi.org/10.1140/epje/s10189-022-00212-3.Search in Google Scholar PubMed PubMed Central
63. Hieronimus, R, Raschke, S, Heuer, A. How to model the interaction of charged Janus particles. J Chem Phys 2016;145:064303. https://doi.org/10.1063/1.4960424.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston