Abstract
In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: No funding was received for conducting this study.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Appendix A: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkanes using the bond energies and (γ) model
| Bond energy (kJ/mol) | 415.2 | 348 | 614 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | C–H | C–C | C=C | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Methane | 1 | 4 | 4 | 0 | 0 | 2 | 1 | 2 | 8 | 892 | 902.5 |
| Ethane | 2 | 6 | 6 | 1 | 0 | 3.5 | 2 | 3 | 14 | 1561 | 1561.1 |
| Propane | 3 | 8 | 8 | 2 | 0 | 5 | 3 | 4 | 20 | 2230 | 2219.7 |
| Butane | 4 | 10 | 10 | 3 | 0 | 6.5 | 4 | 5 | 26 | 2899 | 2878.3 |
| Pentane | 5 | 12 | 12 | 4 | 0 | 8 | 5 | 6 | 32 | 3568 | 3536.9 |
| Hexane | 6 | 14 | 14 | 5 | 0 | 9.5 | 6 | 7 | 38 | 4237 | 4195.5 |
| Heptane | 7 | 16 | 16 | 6 | 0 | 11 | 7 | 8 | 44 | 4906 | 4854.1 |
| Octane | 8 | 18 | 18 | 7 | 0 | 12.5 | 8 | 9 | 50 | 5575 | 5512.7 |
| Nonane | 9 | 20 | 20 | 8 | 0 | 14 | 9 | 10 | 56 | 6244 | 6171.3 |
| Decane | 10 | 22 | 22 | 9 | 0 | 15.5 | 10 | 11 | 62 | 6913 | 6829.9 |
| Undecane | 11 | 24 | 24 | 10 | 0 | 17 | 11 | 12 | 68 | 7582 | 7488.5 |
| Dodecane | 12 | 26 | 26 | 11 | 0 | 18.5 | 12 | 13 | 74 | 8251 | 8147.1 |
| Tridecane | 13 | 28 | 28 | 12 | 0 | 20 | 13 | 14 | 80 | 8920 | 8805.7 |
| Tetradecane | 14 | 30 | 30 | 13 | 0 | 21.5 | 14 | 15 | 86 | 9589 | 9464.3 |
| Pentadecane | 15 | 32 | 32 | 14 | 0 | 23 | 15 | 16 | 92 | 10,258 | 10,122.9 |
| Hexadecane | 16 | 34 | 34 | 15 | 0 | 24.5 | 16 | 17 | 98 | 10,927 | 10,781.5 |
| Heptadecane | 17 | 36 | 36 | 16 | 0 | 26 | 17 | 18 | 104 | 11,596 | 11,440.1 |
| Octadecane | 18 | 38 | 38 | 17 | 0 | 27.5 | 18 | 19 | 110 | 12,265 | 12,098.7 |
| Nonadecane | 19 | 40 | 40 | 18 | 0 | 29 | 19 | 20 | 116 | 12,934 | 12,757.3 |
| Icosane | 20 | 42 | 42 | 19 | 0 | 30.5 | 20 | 21 | 122 | 13,603 | 13,415.9 |
Appendix B: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkenes using the bond energies
| Bond energy (kJ/mol) | 415.2 | 348 | 614 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | C–H | C–C | C=C | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Ethene | 2 | 4 | 4 | 0 | 1 | 3 | 2 | 2 | 12 | 1399.2 | 1338 |
| Propene | 3 | 6 | 6 | 1 | 1 | 4.5 | 3 | 3 | 18 | 2057.8 | 2007 |
| Butene | 4 | 8 | 8 | 2 | 1 | 6 | 4 | 4 | 24 | 2716.4 | 2676 |
| Pantene | 5 | 10 | 10 | 3 | 1 | 7.5 | 5 | 5 | 30 | 3375 | 3345 |
| Hexene | 6 | 12 | 12 | 4 | 1 | 9 | 6 | 6 | 36 | 4033.6 | 4014 |
| Heptene | 7 | 14 | 14 | 5 | 1 | 10.5 | 7 | 7 | 42 | 4692.2 | 4683 |
| Octene | 8 | 16 | 16 | 6 | 1 | 12 | 8 | 8 | 48 | 5350.8 | 5352 |
| Nonene | 9 | 18 | 18 | 7 | 1 | 13.5 | 9 | 9 | 54 | 6009.4 | 6021 |
| Decene | 10 | 20 | 20 | 8 | 1 | 15 | 10 | 10 | 60 | 6668 | 6690 |
| Undecane | 11 | 22 | 22 | 9 | 1 | 16.5 | 11 | 11 | 66 | 7326.6 | 7359 |
| Didecene | 12 | 24 | 24 | 10 | 1 | 18 | 12 | 12 | 72 | 7985.2 | 8028 |
| Tridecene | 13 | 26 | 26 | 11 | 1 | 19.5 | 13 | 13 | 78 | 8643.8 | 8697 |
| Tetradecene | 14 | 28 | 28 | 12 | 1 | 21 | 14 | 14 | 84 | 9302.4 | 9366 |
| Pentadecene | 15 | 30 | 30 | 13 | 1 | 22.5 | 15 | 15 | 90 | 9961 | 10,035 |
| Hexadecene | 16 | 32 | 32 | 14 | 1 | 24 | 16 | 16 | 96 | 10,619.6 | 10,704 |
| Heptadecene | 17 | 34 | 34 | 15 | 1 | 25.5 | 17 | 17 | 102 | 11,278.2 | 11,373 |
| Octadecene | 18 | 36 | 36 | 16 | 1 | 27 | 18 | 18 | 108 | 11,936.8 | 12,042 |
| Nonadecene | 19 | 38 | 38 | 17 | 1 | 28.5 | 19 | 19 | 114 | 12,595.4 | 12,711 |
| Eicoseen | 20 | 40 | 40 | 18 | 1 | 30 | 20 | 20 | 120 | 13,254 | 13,380 |
Appendix C: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkynes using the bond energies
| Bond energy (kJ/mol) | 415.2 | 348 | 614 | 839 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | C–H | C–C | C=C | C≡C | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Ethyne | 2 | 2 | 2 | 0 | 0 | 1 | 2.5 | 2 | 1 | 10 | 1278.3 | 1115 |
| Propyne | 3 | 4 | 4 | 1 | 0 | 1 | 4 | 3 | 2 | 16 | 1936.9 | 1784 |
| Butyne | 4 | 6 | 6 | 2 | 0 | 1 | 5.5 | 4 | 3 | 22 | 2595.5 | 2453 |
| Pentyne | 5 | 8 | 8 | 3 | 0 | 1 | 7 | 5 | 4 | 28 | 3254.1 | 3122 |
| Hexyne | 6 | 10 | 10 | 4 | 0 | 1 | 8.5 | 6 | 5 | 34 | 3912.7 | 3791 |
| Heptyne | 7 | 12 | 12 | 5 | 0 | 1 | 10 | 7 | 6 | 40 | 4571.3 | 4460 |
| Octyne | 8 | 14 | 14 | 6 | 0 | 1 | 11.5 | 8 | 7 | 46 | 5229.9 | 5129 |
| Nonyne | 9 | 16 | 16 | 7 | 0 | 1 | 13 | 9 | 8 | 52 | 5888.5 | 5798 |
| Decyne | 10 | 18 | 18 | 8 | 0 | 1 | 14.5 | 10 | 9 | 58 | 6547.1 | 6467 |
| Undecyne | 11 | 20 | 20 | 9 | 0 | 1 | 16 | 11 | 10 | 64 | 7205.7 | 7136 |
| Didecine | 12 | 22 | 22 | 10 | 0 | 1 | 17.5 | 12 | 11 | 70 | 7864.3 | 7805 |
| Tridecin | 13 | 24 | 24 | 11 | 0 | 1 | 19 | 13 | 12 | 76 | 8522.9 | 8474 |
| Tetradecyne | 14 | 26 | 26 | 12 | 0 | 1 | 20.5 | 14 | 13 | 82 | 9181.5 | 9143 |
| Pentadecyne | 15 | 28 | 28 | 13 | 0 | 1 | 22 | 15 | 14 | 88 | 9840.1 | 9812 |
| Hexadecyne | 16 | 30 | 30 | 14 | 0 | 1 | 23.5 | 16 | 15 | 94 | 10,498.7 | 10,481 |
| Heptadecyne | 17 | 32 | 32 | 15 | 0 | 1 | 25 | 17 | 16 | 100 | 11,157.3 | 11,150 |
| Octadcyne | 18 | 34 | 34 | 16 | 0 | 1 | 26.5 | 18 | 17 | 106 | 11,815.9 | 11,819 |
| Nonadecyne | 19 | 36 | 36 | 17 | 0 | 1 | 28 | 19 | 18 | 112 | 12,474.5 | 12,488 |
| 20 | 38 | 38 | 18 | 0 | 1 | 29.5 | 20 | 19 | 118 | 13,133.1 | 13,157 | |
Appendix D: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alcohols using the bond energies
| Bond energy (kJ/mol) | 415.2 | 348 | 350.1 | 460 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | O | C–H | C–C | C–O | O–H | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Methanol | 1 | 4 | 1 | 3 | 0 | 1 | 1 | 1.5 | 1 | 2 | 6 | 702.7 | 669 |
| Ethanol | 2 | 6 | 1 | 5 | 1 | 1 | 1 | 3 | 2 | 3 | 12 | 1361.3 | 1338 |
| Propanol | 3 | 8 | 1 | 7 | 2 | 1 | 1 | 4.5 | 3 | 4 | 18 | 2019.9 | 2007 |
| Butanol | 4 | 10 | 1 | 9 | 3 | 1 | 1 | 6 | 4 | 5 | 24 | 2678.5 | 2676 |
| Pentanol | 5 | 12 | 1 | 11 | 4 | 1 | 1 | 7.5 | 5 | 6 | 30 | 3337.1 | 3345 |
| Hexanol | 6 | 14 | 1 | 13 | 5 | 1 | 1 | 9 | 6 | 7 | 36 | 3995.7 | 4014 |
| Heptanol | 7 | 16 | 1 | 15 | 6 | 1 | 1 | 10.5 | 7 | 8 | 42 | 4654.3 | 4683 |
| Octanol | 8 | 18 | 1 | 17 | 7 | 1 | 1 | 12 | 8 | 9 | 48 | 5312.9 | 5352 |
| Nonanol | 9 | 20 | 1 | 19 | 8 | 1 | 1 | 13.5 | 9 | 10 | 54 | 5971.5 | 6021 |
| Decanol | 10 | 22 | 1 | 21 | 9 | 1 | 1 | 15 | 10 | 11 | 60 | 6630.1 | 6690 |
| Undecanol | 11 | 24 | 1 | 23 | 10 | 1 | 1 | 16.5 | 11 | 12 | 66 | 7288.7 | 7359 |
| Didecanol | 12 | 26 | 1 | 25 | 11 | 1 | 1 | 18 | 12 | 13 | 72 | 7947.3 | 8028 |
| Tridecanol | 13 | 28 | 1 | 27 | 12 | 1 | 1 | 19.5 | 13 | 14 | 78 | 8605.9 | 8697 |
| Tetradecanol | 14 | 30 | 1 | 29 | 13 | 1 | 1 | 21 | 14 | 15 | 84 | 9264.5 | 9366 |
| Pentadecanol | 15 | 32 | 1 | 31 | 14 | 1 | 1 | 22.5 | 15 | 16 | 90 | 9923.1 | 10,035 |
| Hexadecanol | 16 | 34 | 1 | 33 | 15 | 1 | 1 | 24 | 16 | 17 | 96 | 10,581.7 | 10,704 |
| Heptadecanol | 17 | 36 | 1 | 35 | 16 | 1 | 1 | 25.5 | 17 | 18 | 102 | 11,240.3 | 11,373 |
| Octadecanol | 18 | 38 | 1 | 37 | 17 | 1 | 1 | 27 | 18 | 19 | 108 | 11,898.9 | 12,042 |
| Nonadecanol | 19 | 40 | 1 | 39 | 18 | 1 | 1 | 28.5 | 19 | 20 | 114 | 12,557.5 | 12,711 |
| Eicosanol | 20 | 42 | 1 | 41 | 19 | 1 | 1 | 30 | 20 | 21 | 120 | 13,216.1 | 13,380 |
Appendix E: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of monosaccharide
| Bond energy (kJ/mol) | 415.2 | 348 | 350.1 | 736.7 | 460 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | O | C–H | C–C | C–O | C=O | O–H | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Diose | 2 | 4 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 8 | 923.8 | 892 |
| Triose | 3 | 6 | 3 | 4 | 2 | 2 | 1 | 2 | 3 | 3 | 3 | 12 | 1382.6 | 1338 |
| Tetrose | 4 | 8 | 4 | 5 | 3 | 3 | 1 | 3 | 4 | 4 | 4 | 16 | 1841.4 | 1784 |
| Pentose | 5 | 10 | 5 | 6 | 4 | 4 | 1 | 4 | 5 | 5 | 5 | 20 | 2300.2 | 2230 |
| Hexose | 6 | 12 | 6 | 7 | 5 | 5 | 1 | 5 | 6 | 6 | 6 | 24 | 2759 | 2676 |
| Heptose | 7 | 14 | 7 | 8 | 6 | 6 | 1 | 6 | 7 | 7 | 7 | 28 | 3217.8 | 3122 |
| Octose | 8 | 16 | 8 | 9 | 7 | 7 | 1 | 7 | 8 | 8 | 8 | 32 | 3676.6 | 3568 |
| Nanose | 9 | 18 | 9 | 10 | 8 | 8 | 1 | 8 | 9 | 9 | 9 | 36 | 4135.4 | 4014 |
| Decose | 10 | 20 | 10 | 11 | 9 | 9 | 1 | 9 | 10 | 10 | 10 | 40 | 4594.2 | 4460 |
| Undecose | 11 | 22 | 11 | 12 | 10 | 10 | 1 | 10 | 11 | 11 | 11 | 44 | 5053 | 4906 |
| Didecose | 12 | 24 | 12 | 13 | 11 | 11 | 1 | 11 | 12 | 12 | 12 | 48 | 5511.8 | 5352 |
| Tridecose | 13 | 26 | 13 | 14 | 12 | 12 | 1 | 12 | 13 | 13 | 13 | 52 | 5970.6 | 5798 |
| Tetradecose | 14 | 28 | 14 | 15 | 13 | 13 | 1 | 13 | 14 | 14 | 14 | 56 | 6429.4 | 6244 |
| Pentadecose | 15 | 30 | 15 | 16 | 14 | 14 | 1 | 14 | 15 | 15 | 15 | 60 | 6888.2 | 6690 |
| Hexadecose | 16 | 32 | 16 | 17 | 15 | 15 | 1 | 15 | 16 | 16 | 16 | 64 | 7347 | 7136 |
| Heptadecose | 17 | 34 | 17 | 18 | 16 | 16 | 1 | 16 | 17 | 17 | 17 | 68 | 7805.8 | 7582 |
| Octadecose | 18 | 36 | 18 | 19 | 17 | 17 | 1 | 17 | 18 | 18 | 18 | 72 | 8264.6 | 8028 |
| Nanodecose | 19 | 38 | 19 | 20 | 18 | 18 | 1 | 18 | 19 | 19 | 19 | 76 | 8723.4 | 8474 |
| Icosadecose | 20 | 40 | 20 | 21 | 19 | 19 | 1 | 19 | 20 | 20 | 20 | 80 | 9182.2 | 8920 |
Appendix F: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of polyhydric alcohol
| Bond energy (kJ/mol) | 415.2 | 348 | 350.1 | 460 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | O | C–H | C–C | C–O | O–H | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Ethylene glycol | 6 | 2 | 4 | 1 | 2 | 2 | 2.5 | 2 | 3 | 10 | 1161.5 | 1115 | |
| Glycerin | 8 | 3 | 5 | 2 | 3 | 3 | 3.5 | 3 | 4 | 14 | 1620.3 | 1561 | |
| Erythritol | 10 | 4 | 6 | 3 | 4 | 4 | 4.5 | 4 | 5 | 18 | 2079.1 | 2007 | |
| Xylitol | 12 | 5 | 7 | 4 | 5 | 5 | 5.5 | 5 | 6 | 22 | 2537.9 | 2453 | |
| Sorbitol | 14 | 6 | 8 | 5 | 6 | 6 | 6.5 | 6 | 7 | 26 | 2996.7 | 2899 | |
| Volemitol | 16 | 7 | 9 | 6 | 7 | 7 | 7.5 | 7 | 8 | 30 | 3455.5 | 3345 | |
| Octaneoctal | 8 | 18 | 8 | 10 | 7 | 8 | 8 | 8.5 | 8 | 9 | 34 | 3914.3 | 3791 |
| Nonitol | 9 | 20 | 9 | 11 | 8 | 9 | 9 | 9.5 | 9 | 10 | 38 | 4373.1 | 4237 |
| 10 | 22 | 10 | 12 | 9 | 10 | 10 | 10.5 | 10 | 11 | 42 | 4831.9 | 4683 | |
| 11 | 24 | 11 | 13 | 10 | 11 | 11 | 11.5 | 11 | 12 | 46 | 5290.7 | 5129 | |
| 12 | 26 | 12 | 14 | 11 | 12 | 12 | 12.5 | 12 | 13 | 50 | 5749.5 | 5575 | |
| 13 | 28 | 13 | 15 | 12 | 13 | 13 | 13.5 | 13 | 14 | 54 | 6208.3 | 6021 | |
| 14 | 30 | 14 | 16 | 13 | 14 | 14 | 14.5 | 14 | 15 | 58 | 6667.1 | 6467 | |
| 15 | 32 | 15 | 17 | 14 | 15 | 15 | 15.5 | 15 | 16 | 62 | 7125.9 | 6913 | |
| 16 | 34 | 16 | 18 | 15 | 16 | 16 | 16.5 | 16 | 17 | 66 | 7584.7 | 7359 | |
| 17 | 36 | 17 | 19 | 16 | 17 | 17 | 17.5 | 17 | 18 | 70 | 8043.5 | 7805 | |
| 18 | 38 | 18 | 20 | 17 | 18 | 18 | 18.5 | 18 | 19 | 74 | 8502.3 | 8251 | |
| 19 | 40 | 19 | 21 | 18 | 19 | 19 | 19.5 | 19 | 20 | 78 | 8961.1 | 8697 | |
| 20 | 42 | 20 | 22 | 19 | 20 | 20 | 20.5 | 20 | 21 | 82 | 9419.9 | 9143 | |
Appendix G: The structure, bond energies, stoichiometric coefficients in complete combustion and heats of combustion of alkyl acetate
| Bond energy (kJ/mol) | 415.2 | 348 | 350.1 | 746.7 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | O | C–H | C–C | C–O | C=O | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Methyl acetate | 3 | 6 | 2 | 6 | 1 | 2 | 1 | 3.5 | 3 | 3 | 14 | 1615.1 | 1561 |
| Ethyl acetate | 4 | 8 | 2 | 8 | 2 | 2 | 1 | 5 | 4 | 4 | 20 | 2273.7 | 2230 |
| Propyl acetate | 5 | 10 | 2 | 10 | 3 | 2 | 1 | 6.5 | 5 | 5 | 26 | 2932.3 | 2899 |
| Butyl acetate | 6 | 12 | 2 | 12 | 4 | 2 | 1 | 8 | 6 | 6 | 32 | 3590.9 | 3568 |
| Pentyl acetate | 7 | 14 | 2 | 14 | 5 | 2 | 1 | 9.5 | 7 | 7 | 38 | 4249.5 | 4237 |
| Hexyl acetate | 8 | 16 | 2 | 16 | 6 | 2 | 1 | 11 | 8 | 8 | 44 | 4908.1 | 4906 |
| Heptyl acetate | 9 | 18 | 2 | 18 | 7 | 2 | 1 | 12.5 | 9 | 9 | 50 | 5566.7 | 5575 |
| Octyl acetate | 10 | 20 | 2 | 20 | 8 | 2 | 1 | 14 | 10 | 10 | 56 | 6225.3 | 6244 |
| Nonyl acetate | 11 | 22 | 2 | 22 | 9 | 2 | 1 | 15.5 | 11 | 11 | 62 | 6883.9 | 6913 |
| Decyl acetate | 12 | 24 | 2 | 24 | 10 | 2 | 1 | 17 | 12 | 12 | 68 | 7542.5 | 7582 |
| Undecyl acetate | 13 | 26 | 2 | 26 | 11 | 2 | 1 | 18.5 | 13 | 13 | 74 | 8201.1 | 8251 |
| Didecyl acetate | 14 | 28 | 2 | 28 | 12 | 2 | 1 | 20 | 14 | 14 | 80 | 8859.7 | 8920 |
| Tridecyl acetate | 15 | 30 | 2 | 30 | 13 | 2 | 1 | 21.5 | 15 | 15 | 86 | 9518.3 | 9589 |
| Tetradecyl acetate | 16 | 32 | 2 | 32 | 14 | 2 | 1 | 23 | 16 | 16 | 92 | 10,176.9 | 10,258 |
| Pentadecyl acetate | 17 | 34 | 2 | 34 | 15 | 2 | 1 | 24.5 | 17 | 17 | 98 | 10,835.5 | 10,927 |
| Hexadecyl acetate | 18 | 36 | 2 | 36 | 16 | 2 | 1 | 26 | 18 | 18 | 104 | 11,494.1 | 11,596 |
| Heptadecyl acetate | 19 | 38 | 2 | 38 | 17 | 2 | 1 | 27.5 | 19 | 19 | 110 | 12,152.7 | 12,265 |
| Octadecyl acetate | 20 | 40 | 2 | 40 | 18 | 2 | 1 | 29 | 20 | 20 | 116 | 12,811.3 | 12,934 |
Appendix H: The structure, bond energies, stoichiometric coefficients in complete combustion and heats of combustion of alkyl benzoate
| Bond energy (kJ/mol) | 415.2 | 348 | 614 | 350.1 | 746.7 | 390.2 | 1500.9 | 921.4 | Heat of combustion (kJ/mol) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound | C | H | O | C–H | C–C | C=C | C–O | C=O | O2 | CO2 | H2O | Degree of reduction | ∆H (bond energies) | ∆H (γ-model) |
| Methyl benzoate | 8 | 8 | 2 | 8 | 4 | 3 | 2 | 1 | 9 | 8 | 4 | 36 | 4178.5 | 4014 |
| Ethyl benzoate | 9 | 10 | 2 | 10 | 5 | 3 | 2 | 1 | 10.5 | 9 | 5 | 42 | 4837.1 | 4683 |
| Propyl benzoate | 10 | 12 | 2 | 12 | 6 | 3 | 2 | 1 | 12 | 10 | 6 | 48 | 5495.7 | 5352 |
| Butyl benzoate | 11 | 14 | 2 | 14 | 7 | 3 | 2 | 1 | 13.5 | 11 | 7 | 54 | 6154.3 | 6021 |
| Pentyl benzoate | 12 | 16 | 2 | 16 | 8 | 3 | 2 | 1 | 15 | 12 | 8 | 60 | 6812.9 | 6690 |
| Hexyl benzoate | 13 | 18 | 2 | 18 | 9 | 3 | 2 | 1 | 16.5 | 13 | 9 | 66 | 7471.5 | 7359 |
| Heptyl benzoate | 14 | 20 | 2 | 20 | 10 | 3 | 2 | 1 | 18 | 14 | 10 | 72 | 8130.1 | 8028 |
| Octyl benzoate | 15 | 22 | 2 | 22 | 11 | 3 | 2 | 1 | 19.5 | 15 | 11 | 78 | 8788.7 | 8697 |
| Nonyl benzoate | 16 | 24 | 2 | 24 | 12 | 3 | 2 | 1 | 21 | 16 | 12 | 84 | 9447.3 | 9366 |
| Decyl benzoate | 17 | 26 | 2 | 26 | 13 | 3 | 2 | 1 | 22.5 | 17 | 13 | 90 | 10,105.9 | 10,035 |
| Undecyl benzoate | 18 | 28 | 2 | 28 | 14 | 3 | 2 | 1 | 24 | 18 | 14 | 96 | 10,764.5 | 10,704 |
| Didecyl benzoate | 19 | 30 | 2 | 30 | 15 | 3 | 2 | 1 | 25.5 | 19 | 15 | 102 | 11,423.1 | 11,373 |
| Tridecyl benzoate | 20 | 32 | 2 | 32 | 16 | 3 | 2 | 1 | 27 | 20 | 16 | 108 | 12,081.7 | 12,042 |
| Tetradecyl benzoate | 21 | 34 | 2 | 34 | 17 | 3 | 2 | 1 | 28.5 | 21 | 17 | 114 | 12,740.3 | 12,711 |
| Pentadecyl benzoate | 22 | 36 | 2 | 36 | 18 | 3 | 2 | 1 | 30 | 22 | 18 | 120 | 13,398.9 | 13,380 |
| Hexadecyl benzoate | 23 | 38 | 2 | 38 | 19 | 3 | 2 | 1 | 31.5 | 23 | 19 | 126 | 14,057.5 | 14,049 |
| Heptadecyl benzoate | 24 | 40 | 2 | 40 | 20 | 3 | 2 | 1 | 33 | 24 | 20 | 132 | 14,716.1 | 14,718 |
| Octadecyl benzoate | 25 | 42 | 2 | 42 | 21 | 3 | 2 | 1 | 34.5 | 25 | 21 | 138 | 15,374.7 | 15,387 |
References
1. Deng, S, Lu, X, Tan, H, Wang, X, Xiong, X. Effects of a combination of biomass addition and atmosphere on combustion characteristics and kinetics of oily sludge. Biomass Convers Biorefin 2021;11:393–407. https://doi.org/10.1007/s13399-020-00697-y.Search in Google Scholar
2. Dernbecher, A, Dieguez-Alonso, A, Ortwein, A, Tabet, F. Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Convers Biorefin 2019;9:129–82. https://doi.org/10.1007/s13399-019-00370-z.Search in Google Scholar
3. Devi, S, Sahoo, N, Muthukumar, P. Effect of combustion zone material on the thermal performance of a biogas-fuelled porous media burner: experimental studies. Biomass Convers Biorefin 2022;12:1555–63. https://doi.org/10.1007/s13399-020-01073-6.Search in Google Scholar
4. Yusuf, AA, Inambao, FL. Effect of low bioethanol fraction on emissions, performance, and combustion behavior in a modernized electronic fuel injection engine. Biomass Convers Biorefin 2021;11:885–93. https://doi.org/10.1007/s13399-019-00519-w.Search in Google Scholar
5. Benson, SW. Thermochemical kinetics, 2nd ed. New York, London, Sydney, Toronto: John Wiley & Sons; 1976.Search in Google Scholar
6. Pandey, K, Basu, S. High vapour pressure nanofuel droplet combustion and heat transfer: insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release. Combust Flame 2019;209:167–79. https://doi.org/10.1016/j.combustflame.2019.07.043.Search in Google Scholar
7. Sagadeev, E, Gimadeev, A, Barabanov, V. Calculation of the heat of combustion for organonitrogen compounds using a group additivity scheme. Theor Found Chem Eng 2009;43:108–18. https://doi.org/10.1134/s004057950901014x.Search in Google Scholar
8. McDermitt, D, Loomis, R. Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Ann Bot 1981;48:275–90. https://doi.org/10.1093/oxfordjournals.aob.a086125.Search in Google Scholar
9. Patel, SA, Erickson, L. Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnol Bioeng 1981;23:2051–67. https://doi.org/10.1002/bit.260230910.Search in Google Scholar
10. Roels, J. Energetics and kinetics in biotechnology. Amsterdam: Elsevier; 1983.Search in Google Scholar
11. Williams, K, Percival, F, Merino, J, Mooney, H. Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 1987;10:725–34. https://doi.org/10.1111/1365-3040.ep11604754.Search in Google Scholar
12. Sandler, SI, Orbey, H. On the thermodynamics of microbial growth processes. Biotechnol Bioeng 1991;38:697–718. https://doi.org/10.1002/bit.260380704.Search in Google Scholar PubMed
13. Gary, C, Frossard, J, Chenevard, D. Heat of combustion, degree of reduction and carbon content: 3 interrelated methods of estimating the construction cost of plant tissues. Agronomie 1995;15:59–69. https://doi.org/10.1051/agro:19950107.10.1051/agro:19950107Search in Google Scholar
14. Duboc, P, Schill, N, Menoud, L, Van Gulik, W, Von Stockar, U. Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction. J Biotechnol 1995;43:145–58. https://doi.org/10.1016/0168-1656(95)00135-0.Search in Google Scholar PubMed
15. Cydzik-Kwiatkowska, A, Wojnowska-Baryla, I, Szatkowski, M. Nitrification at low COD/N ratio in the reactor with granular sludge. J Biotechnol 2010;150:249. https://doi.org/10.1016/j.jbiotec.2010.09.122.Search in Google Scholar
16. Moussavi, G, Ghodrati, S, Mohseni-Bandpei, A. The biodegradation and COD removal of 2-chlorophenol in a granular anoxic baffled reactor. J Biotechnol 2014;184:111–7. https://doi.org/10.1016/j.jbiotec.2014.05.010.Search in Google Scholar PubMed
17. Leite, VD, Ramos, RO, Silva, PM, Lopes, WS, Sousa, JT. Kinetic models describing the hydrolytic stage of the anaerobic co-digestion of solid vegetable waste and anaerobic sewage sludge. Biomass Convers Biorefin 2023;13:343–53.10.1007/s13399-021-01574-ySearch in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- A review of frictional pressure drop characteristics of single phase microchannels having different shapes of cross sections
- Research Articles
- Taguchi L16 (44) orthogonal array-based study and thermodynamics analysis for electro-Fenton process treatment of textile industrial dye
- Green synthesis of silver nanoparticles from Aspergillus flavus and their antibacterial performance
- Prediction of effect of wind speed on air pollution level using machine learning technique
- Model-based evaluation of heat of combustion using the degree of reduction
- Enhanced design of PI controller with lead-lag filter for unstable and integrating plus time delay processes
- Effect of operating parameters on the sludge settling characteristics by treatment of the textile dyeing effluent using electrocoagulation
- Simultaneous charging and discharging of metal foam composite phase change material in triplex-tube latent heat storage system under various configurations
- Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty
- Thermo-kinetics, thermodynamics, and ANN modeling of the pyrolytic behaviours of Corn Cob, Husk, Leaf, and Stalk using thermogravimetric analysis
Articles in the same Issue
- Frontmatter
- Review
- A review of frictional pressure drop characteristics of single phase microchannels having different shapes of cross sections
- Research Articles
- Taguchi L16 (44) orthogonal array-based study and thermodynamics analysis for electro-Fenton process treatment of textile industrial dye
- Green synthesis of silver nanoparticles from Aspergillus flavus and their antibacterial performance
- Prediction of effect of wind speed on air pollution level using machine learning technique
- Model-based evaluation of heat of combustion using the degree of reduction
- Enhanced design of PI controller with lead-lag filter for unstable and integrating plus time delay processes
- Effect of operating parameters on the sludge settling characteristics by treatment of the textile dyeing effluent using electrocoagulation
- Simultaneous charging and discharging of metal foam composite phase change material in triplex-tube latent heat storage system under various configurations
- Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty
- Thermo-kinetics, thermodynamics, and ANN modeling of the pyrolytic behaviours of Corn Cob, Husk, Leaf, and Stalk using thermogravimetric analysis