Home Model-based evaluation of heat of combustion using the degree of reduction
Article
Licensed
Unlicensed Requires Authentication

Model-based evaluation of heat of combustion using the degree of reduction

  • Hanieh Shokrkar EMAIL logo and Sirous Ebrahimi
Published/Copyright: April 21, 2023
Become an author with De Gruyter Brill

Abstract

In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).


Corresponding author: Hanieh Shokrkar, Biotechnology Research Center, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: No funding was received for conducting this study.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkanes using the bond energies and (γ) model

Bond energy (kJ/mol) 415.2 348 614 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H C–H C–C C=C O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Methane 1 4 4 0 0 2 1 2 8 892 902.5
Ethane 2 6 6 1 0 3.5 2 3 14 1561 1561.1
Propane 3 8 8 2 0 5 3 4 20 2230 2219.7
Butane 4 10 10 3 0 6.5 4 5 26 2899 2878.3
Pentane 5 12 12 4 0 8 5 6 32 3568 3536.9
Hexane 6 14 14 5 0 9.5 6 7 38 4237 4195.5
Heptane 7 16 16 6 0 11 7 8 44 4906 4854.1
Octane 8 18 18 7 0 12.5 8 9 50 5575 5512.7
Nonane 9 20 20 8 0 14 9 10 56 6244 6171.3
Decane 10 22 22 9 0 15.5 10 11 62 6913 6829.9
Undecane 11 24 24 10 0 17 11 12 68 7582 7488.5
Dodecane 12 26 26 11 0 18.5 12 13 74 8251 8147.1
Tridecane 13 28 28 12 0 20 13 14 80 8920 8805.7
Tetradecane 14 30 30 13 0 21.5 14 15 86 9589 9464.3
Pentadecane 15 32 32 14 0 23 15 16 92 10,258 10,122.9
Hexadecane 16 34 34 15 0 24.5 16 17 98 10,927 10,781.5
Heptadecane 17 36 36 16 0 26 17 18 104 11,596 11,440.1
Octadecane 18 38 38 17 0 27.5 18 19 110 12,265 12,098.7
Nonadecane 19 40 40 18 0 29 19 20 116 12,934 12,757.3
Icosane 20 42 42 19 0 30.5 20 21 122 13,603 13,415.9

Appendix B: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkenes using the bond energies

Bond energy (kJ/mol) 415.2 348 614 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H C–H C–C C=C O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Ethene 2 4 4 0 1 3 2 2 12 1399.2 1338
Propene 3 6 6 1 1 4.5 3 3 18 2057.8 2007
Butene 4 8 8 2 1 6 4 4 24 2716.4 2676
Pantene 5 10 10 3 1 7.5 5 5 30 3375 3345
Hexene 6 12 12 4 1 9 6 6 36 4033.6 4014
Heptene 7 14 14 5 1 10.5 7 7 42 4692.2 4683
Octene 8 16 16 6 1 12 8 8 48 5350.8 5352
Nonene 9 18 18 7 1 13.5 9 9 54 6009.4 6021
Decene 10 20 20 8 1 15 10 10 60 6668 6690
Undecane 11 22 22 9 1 16.5 11 11 66 7326.6 7359
Didecene 12 24 24 10 1 18 12 12 72 7985.2 8028
Tridecene 13 26 26 11 1 19.5 13 13 78 8643.8 8697
Tetradecene 14 28 28 12 1 21 14 14 84 9302.4 9366
Pentadecene 15 30 30 13 1 22.5 15 15 90 9961 10,035
Hexadecene 16 32 32 14 1 24 16 16 96 10,619.6 10,704
Heptadecene 17 34 34 15 1 25.5 17 17 102 11,278.2 11,373
Octadecene 18 36 36 16 1 27 18 18 108 11,936.8 12,042
Nonadecene 19 38 38 17 1 28.5 19 19 114 12,595.4 12,711
Eicoseen 20 40 40 18 1 30 20 20 120 13,254 13,380

Appendix C: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alkynes using the bond energies

Bond energy (kJ/mol) 415.2 348 614 839 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H C–H C–C C=C C≡C O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Ethyne 2 2 2 0 0 1 2.5 2 1 10 1278.3 1115
Propyne 3 4 4 1 0 1 4 3 2 16 1936.9 1784
Butyne 4 6 6 2 0 1 5.5 4 3 22 2595.5 2453
Pentyne 5 8 8 3 0 1 7 5 4 28 3254.1 3122
Hexyne 6 10 10 4 0 1 8.5 6 5 34 3912.7 3791
Heptyne 7 12 12 5 0 1 10 7 6 40 4571.3 4460
Octyne 8 14 14 6 0 1 11.5 8 7 46 5229.9 5129
Nonyne 9 16 16 7 0 1 13 9 8 52 5888.5 5798
Decyne 10 18 18 8 0 1 14.5 10 9 58 6547.1 6467
Undecyne 11 20 20 9 0 1 16 11 10 64 7205.7 7136
Didecine 12 22 22 10 0 1 17.5 12 11 70 7864.3 7805
Tridecin 13 24 24 11 0 1 19 13 12 76 8522.9 8474
Tetradecyne 14 26 26 12 0 1 20.5 14 13 82 9181.5 9143
Pentadecyne 15 28 28 13 0 1 22 15 14 88 9840.1 9812
Hexadecyne 16 30 30 14 0 1 23.5 16 15 94 10,498.7 10,481
Heptadecyne 17 32 32 15 0 1 25 17 16 100 11,157.3 11,150
Octadcyne 18 34 34 16 0 1 26.5 18 17 106 11,815.9 11,819
Nonadecyne 19 36 36 17 0 1 28 19 18 112 12,474.5 12,488
20 38 38 18 0 1 29.5 20 19 118 13,133.1 13,157

Appendix D: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of alcohols using the bond energies

Bond energy (kJ/mol) 415.2 348 350.1 460 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H O C–H C–C C–O O–H O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Methanol 1 4 1 3 0 1 1 1.5 1 2 6 702.7 669
Ethanol 2 6 1 5 1 1 1 3 2 3 12 1361.3 1338
Propanol 3 8 1 7 2 1 1 4.5 3 4 18 2019.9 2007
Butanol 4 10 1 9 3 1 1 6 4 5 24 2678.5 2676
Pentanol 5 12 1 11 4 1 1 7.5 5 6 30 3337.1 3345
Hexanol 6 14 1 13 5 1 1 9 6 7 36 3995.7 4014
Heptanol 7 16 1 15 6 1 1 10.5 7 8 42 4654.3 4683
Octanol 8 18 1 17 7 1 1 12 8 9 48 5312.9 5352
Nonanol 9 20 1 19 8 1 1 13.5 9 10 54 5971.5 6021
Decanol 10 22 1 21 9 1 1 15 10 11 60 6630.1 6690
Undecanol 11 24 1 23 10 1 1 16.5 11 12 66 7288.7 7359
Didecanol 12 26 1 25 11 1 1 18 12 13 72 7947.3 8028
Tridecanol 13 28 1 27 12 1 1 19.5 13 14 78 8605.9 8697
Tetradecanol 14 30 1 29 13 1 1 21 14 15 84 9264.5 9366
Pentadecanol 15 32 1 31 14 1 1 22.5 15 16 90 9923.1 10,035
Hexadecanol 16 34 1 33 15 1 1 24 16 17 96 10,581.7 10,704
Heptadecanol 17 36 1 35 16 1 1 25.5 17 18 102 11,240.3 11,373
Octadecanol 18 38 1 37 17 1 1 27 18 19 108 11,898.9 12,042
Nonadecanol 19 40 1 39 18 1 1 28.5 19 20 114 12,557.5 12,711
Eicosanol 20 42 1 41 19 1 1 30 20 21 120 13,216.1 13,380

Appendix E: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of monosaccharide

Bond energy (kJ/mol) 415.2 348 350.1 736.7 460 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H O C–H C–C C–O C=O O–H O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Diose 2 4 2 3 1 1 1 1 2 2 2 8 923.8 892
Triose 3 6 3 4 2 2 1 2 3 3 3 12 1382.6 1338
Tetrose 4 8 4 5 3 3 1 3 4 4 4 16 1841.4 1784
Pentose 5 10 5 6 4 4 1 4 5 5 5 20 2300.2 2230
Hexose 6 12 6 7 5 5 1 5 6 6 6 24 2759 2676
Heptose 7 14 7 8 6 6 1 6 7 7 7 28 3217.8 3122
Octose 8 16 8 9 7 7 1 7 8 8 8 32 3676.6 3568
Nanose 9 18 9 10 8 8 1 8 9 9 9 36 4135.4 4014
Decose 10 20 10 11 9 9 1 9 10 10 10 40 4594.2 4460
Undecose 11 22 11 12 10 10 1 10 11 11 11 44 5053 4906
Didecose 12 24 12 13 11 11 1 11 12 12 12 48 5511.8 5352
Tridecose 13 26 13 14 12 12 1 12 13 13 13 52 5970.6 5798
Tetradecose 14 28 14 15 13 13 1 13 14 14 14 56 6429.4 6244
Pentadecose 15 30 15 16 14 14 1 14 15 15 15 60 6888.2 6690
Hexadecose 16 32 16 17 15 15 1 15 16 16 16 64 7347 7136
Heptadecose 17 34 17 18 16 16 1 16 17 17 17 68 7805.8 7582
Octadecose 18 36 18 19 17 17 1 17 18 18 18 72 8264.6 8028
Nanodecose 19 38 19 20 18 18 1 18 19 19 19 76 8723.4 8474
Icosadecose 20 40 20 21 19 19 1 19 20 20 20 80 9182.2 8920

Appendix F: The structure, bond energies, stoichiometric coefficients in complete combustion, and heats of combustion of polyhydric alcohol

Bond energy (kJ/mol) 415.2 348 350.1 460 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H O C–H C–C C–O O–H O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Ethylene glycol 6 2 4 1 2 2 2.5 2 3 10 1161.5 1115
Glycerin 8 3 5 2 3 3 3.5 3 4 14 1620.3 1561
Erythritol 10 4 6 3 4 4 4.5 4 5 18 2079.1 2007
Xylitol 12 5 7 4 5 5 5.5 5 6 22 2537.9 2453
Sorbitol 14 6 8 5 6 6 6.5 6 7 26 2996.7 2899
Volemitol 16 7 9 6 7 7 7.5 7 8 30 3455.5 3345
Octaneoctal 8 18 8 10 7 8 8 8.5 8 9 34 3914.3 3791
Nonitol 9 20 9 11 8 9 9 9.5 9 10 38 4373.1 4237
10 22 10 12 9 10 10 10.5 10 11 42 4831.9 4683
11 24 11 13 10 11 11 11.5 11 12 46 5290.7 5129
12 26 12 14 11 12 12 12.5 12 13 50 5749.5 5575
13 28 13 15 12 13 13 13.5 13 14 54 6208.3 6021
14 30 14 16 13 14 14 14.5 14 15 58 6667.1 6467
15 32 15 17 14 15 15 15.5 15 16 62 7125.9 6913
16 34 16 18 15 16 16 16.5 16 17 66 7584.7 7359
17 36 17 19 16 17 17 17.5 17 18 70 8043.5 7805
18 38 18 20 17 18 18 18.5 18 19 74 8502.3 8251
19 40 19 21 18 19 19 19.5 19 20 78 8961.1 8697
20 42 20 22 19 20 20 20.5 20 21 82 9419.9 9143

Appendix G: The structure, bond energies, stoichiometric coefficients in complete combustion and heats of combustion of alkyl acetate

Bond energy (kJ/mol) 415.2 348 350.1 746.7 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H O C–H C–C C–O C=O O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Methyl acetate 3 6 2 6 1 2 1 3.5 3 3 14 1615.1 1561
Ethyl acetate 4 8 2 8 2 2 1 5 4 4 20 2273.7 2230
Propyl acetate 5 10 2 10 3 2 1 6.5 5 5 26 2932.3 2899
Butyl acetate 6 12 2 12 4 2 1 8 6 6 32 3590.9 3568
Pentyl acetate 7 14 2 14 5 2 1 9.5 7 7 38 4249.5 4237
Hexyl acetate 8 16 2 16 6 2 1 11 8 8 44 4908.1 4906
Heptyl acetate 9 18 2 18 7 2 1 12.5 9 9 50 5566.7 5575
Octyl acetate 10 20 2 20 8 2 1 14 10 10 56 6225.3 6244
Nonyl acetate 11 22 2 22 9 2 1 15.5 11 11 62 6883.9 6913
Decyl acetate 12 24 2 24 10 2 1 17 12 12 68 7542.5 7582
Undecyl acetate 13 26 2 26 11 2 1 18.5 13 13 74 8201.1 8251
Didecyl acetate 14 28 2 28 12 2 1 20 14 14 80 8859.7 8920
Tridecyl acetate 15 30 2 30 13 2 1 21.5 15 15 86 9518.3 9589
Tetradecyl acetate 16 32 2 32 14 2 1 23 16 16 92 10,176.9 10,258
Pentadecyl acetate 17 34 2 34 15 2 1 24.5 17 17 98 10,835.5 10,927
Hexadecyl acetate 18 36 2 36 16 2 1 26 18 18 104 11,494.1 11,596
Heptadecyl acetate 19 38 2 38 17 2 1 27.5 19 19 110 12,152.7 12,265
Octadecyl acetate 20 40 2 40 18 2 1 29 20 20 116 12,811.3 12,934

Appendix H: The structure, bond energies, stoichiometric coefficients in complete combustion and heats of combustion of alkyl benzoate

Bond energy (kJ/mol) 415.2 348 614 350.1 746.7 390.2 1500.9 921.4 Heat of combustion (kJ/mol)
Compound C H O C–H C–C C=C C–O C=O O2 CO2 H2O Degree of reduction H (bond energies) H (γ-model)
Methyl benzoate 8 8 2 8 4 3 2 1 9 8 4 36 4178.5 4014
Ethyl benzoate 9 10 2 10 5 3 2 1 10.5 9 5 42 4837.1 4683
Propyl benzoate 10 12 2 12 6 3 2 1 12 10 6 48 5495.7 5352
Butyl benzoate 11 14 2 14 7 3 2 1 13.5 11 7 54 6154.3 6021
Pentyl benzoate 12 16 2 16 8 3 2 1 15 12 8 60 6812.9 6690
Hexyl benzoate 13 18 2 18 9 3 2 1 16.5 13 9 66 7471.5 7359
Heptyl benzoate 14 20 2 20 10 3 2 1 18 14 10 72 8130.1 8028
Octyl benzoate 15 22 2 22 11 3 2 1 19.5 15 11 78 8788.7 8697
Nonyl benzoate 16 24 2 24 12 3 2 1 21 16 12 84 9447.3 9366
Decyl benzoate 17 26 2 26 13 3 2 1 22.5 17 13 90 10,105.9 10,035
Undecyl benzoate 18 28 2 28 14 3 2 1 24 18 14 96 10,764.5 10,704
Didecyl benzoate 19 30 2 30 15 3 2 1 25.5 19 15 102 11,423.1 11,373
Tridecyl benzoate 20 32 2 32 16 3 2 1 27 20 16 108 12,081.7 12,042
Tetradecyl benzoate 21 34 2 34 17 3 2 1 28.5 21 17 114 12,740.3 12,711
Pentadecyl benzoate 22 36 2 36 18 3 2 1 30 22 18 120 13,398.9 13,380
Hexadecyl benzoate 23 38 2 38 19 3 2 1 31.5 23 19 126 14,057.5 14,049
Heptadecyl benzoate 24 40 2 40 20 3 2 1 33 24 20 132 14,716.1 14,718
Octadecyl benzoate 25 42 2 42 21 3 2 1 34.5 25 21 138 15,374.7 15,387

References

1. Deng, S, Lu, X, Tan, H, Wang, X, Xiong, X. Effects of a combination of biomass addition and atmosphere on combustion characteristics and kinetics of oily sludge. Biomass Convers Biorefin 2021;11:393–407. https://doi.org/10.1007/s13399-020-00697-y.Search in Google Scholar

2. Dernbecher, A, Dieguez-Alonso, A, Ortwein, A, Tabet, F. Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Convers Biorefin 2019;9:129–82. https://doi.org/10.1007/s13399-019-00370-z.Search in Google Scholar

3. Devi, S, Sahoo, N, Muthukumar, P. Effect of combustion zone material on the thermal performance of a biogas-fuelled porous media burner: experimental studies. Biomass Convers Biorefin 2022;12:1555–63. https://doi.org/10.1007/s13399-020-01073-6.Search in Google Scholar

4. Yusuf, AA, Inambao, FL. Effect of low bioethanol fraction on emissions, performance, and combustion behavior in a modernized electronic fuel injection engine. Biomass Convers Biorefin 2021;11:885–93. https://doi.org/10.1007/s13399-019-00519-w.Search in Google Scholar

5. Benson, SW. Thermochemical kinetics, 2nd ed. New York, London, Sydney, Toronto: John Wiley & Sons; 1976.Search in Google Scholar

6. Pandey, K, Basu, S. High vapour pressure nanofuel droplet combustion and heat transfer: insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release. Combust Flame 2019;209:167–79. https://doi.org/10.1016/j.combustflame.2019.07.043.Search in Google Scholar

7. Sagadeev, E, Gimadeev, A, Barabanov, V. Calculation of the heat of combustion for organonitrogen compounds using a group additivity scheme. Theor Found Chem Eng 2009;43:108–18. https://doi.org/10.1134/s004057950901014x.Search in Google Scholar

8. McDermitt, D, Loomis, R. Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Ann Bot 1981;48:275–90. https://doi.org/10.1093/oxfordjournals.aob.a086125.Search in Google Scholar

9. Patel, SA, Erickson, L. Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnol Bioeng 1981;23:2051–67. https://doi.org/10.1002/bit.260230910.Search in Google Scholar

10. Roels, J. Energetics and kinetics in biotechnology. Amsterdam: Elsevier; 1983.Search in Google Scholar

11. Williams, K, Percival, F, Merino, J, Mooney, H. Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 1987;10:725–34. https://doi.org/10.1111/1365-3040.ep11604754.Search in Google Scholar

12. Sandler, SI, Orbey, H. On the thermodynamics of microbial growth processes. Biotechnol Bioeng 1991;38:697–718. https://doi.org/10.1002/bit.260380704.Search in Google Scholar PubMed

13. Gary, C, Frossard, J, Chenevard, D. Heat of combustion, degree of reduction and carbon content: 3 interrelated methods of estimating the construction cost of plant tissues. Agronomie 1995;15:59–69. https://doi.org/10.1051/agro:19950107.10.1051/agro:19950107Search in Google Scholar

14. Duboc, P, Schill, N, Menoud, L, Van Gulik, W, Von Stockar, U. Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction. J Biotechnol 1995;43:145–58. https://doi.org/10.1016/0168-1656(95)00135-0.Search in Google Scholar PubMed

15. Cydzik-Kwiatkowska, A, Wojnowska-Baryla, I, Szatkowski, M. Nitrification at low COD/N ratio in the reactor with granular sludge. J Biotechnol 2010;150:249. https://doi.org/10.1016/j.jbiotec.2010.09.122.Search in Google Scholar

16. Moussavi, G, Ghodrati, S, Mohseni-Bandpei, A. The biodegradation and COD removal of 2-chlorophenol in a granular anoxic baffled reactor. J Biotechnol 2014;184:111–7. https://doi.org/10.1016/j.jbiotec.2014.05.010.Search in Google Scholar PubMed

17. Leite, VD, Ramos, RO, Silva, PM, Lopes, WS, Sousa, JT. Kinetic models describing the hydrolytic stage of the anaerobic co-digestion of solid vegetable waste and anaerobic sewage sludge. Biomass Convers Biorefin 2023;13:343–53.10.1007/s13399-021-01574-ySearch in Google Scholar

Received: 2023-01-01
Accepted: 2023-03-31
Published Online: 2023-04-21

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2023-0001/html?lang=en
Scroll to top button