Home Diglycolamide-Based Solvent Systems in Room Temperature Ionic Liquids for Actinide Ion Extraction: A Review
Article
Licensed
Unlicensed Requires Authentication

Diglycolamide-Based Solvent Systems in Room Temperature Ionic Liquids for Actinide Ion Extraction: A Review

  • Prasanta Kumar Mohapatra EMAIL logo
Published/Copyright: April 21, 2015
Become an author with De Gruyter Brill

Abstract

This review article gives a comprehensive account of the extraction of actinide ions using room temperature ionic liquid-based solvent systems containing diglycolamide (DGA) or functionalized DGA extractants. These extractants include multiple DGA-functionalized ligands such as tripodal DGA (T-DGA) and DGA-functionalized calix [4]arenes (C4DGA). Apart from metal ion extraction behaviour, other important features of the ionic liquid-based solvent systems such as separation behaviour, luminescence spectroscopic results, thermodynamics of extraction and radiolytic stability of the ionic liquid-based solvents are also reviewed. Results from studies on DGA-functionalized task-specific ionic liquids (TSIL) are also included in this review article.

Acknowledgements

The author gratefully acknowledges the encouragement provided by Dr A. Goswami, Head, Radiochemistry Division.

References

1. RogersRD, SeddonKR. Ionic liquids: industrial applications to green chemistry. ACS symposium series 818. Washington, DC: American Chemical Society, 2005.Search in Google Scholar

2. WeingärtnerH. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed2008;47:65470.10.1002/anie.200604951Search in Google Scholar PubMed

3. KolarikZ. Ionic liquids: how far do they extend the potential of solvent extraction of f-elements?Solvent Extr Ion Exc2013;31:2460.10.1080/07366299.2012.700589Search in Google Scholar

4. WeltonT. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev1999;99:207183.10.1021/cr980032tSearch in Google Scholar PubMed

5. EarleJ, SeddonKR. Ionic liquids, green solvents for the future. Pure Appl Chem2000;72:1391.10.1351/pac200072071391Search in Google Scholar

6. OhnoH, editor. Electrochemical aspects of ionic liquids. Hoboken: Wiley-Interscience, 2005.10.1002/0471762512Search in Google Scholar

7. BakerGA, BakerSN, PandeyS, BrightFV. An analytical view of ionic liquids. Analyst2005;130:8008.10.1039/b500865bSearch in Google Scholar PubMed

8. WaldenP. Molecular weights and electrical conductivity of several fused salts. Bull Russ Acad Sci1914;8:40522.Search in Google Scholar

9. RogersRD, SeddonKR. Ionic liquids: solvents of the future? Science2003;302:7923.10.1126/science.1090313Search in Google Scholar PubMed

10. HuddlestonJG, WillauerHD, SwatloskiRP, VisserAE, RogersRD. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun1998;17656.10.1039/A803999BSearch in Google Scholar

11. SwatloskiRP, HolbreyJD, RogersRD. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem2003;5:3613.10.1039/b304400aSearch in Google Scholar

12. JensenMP, DzielawaJA, RickertP, DietzML. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid. J Am Chem Soc2002;124:106645.10.1021/ja027476ySearch in Google Scholar PubMed

13. HanX, ArmstrongDW. Ionic liquids in separations. Acc Chem Res2007;40:107986.10.1021/ar700044ySearch in Google Scholar PubMed

14. KubotaF, GotoM. Application of ionic liquids to solvent extraction. Solvent Extr Res Develop Jpn2006;13:2336.Search in Google Scholar

15. DietzML. Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol2006;41:204763.10.1080/01496390600743144Search in Google Scholar

16. ZhaoH, XiaS, MaP. Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol2005;80:108996.10.1002/jctb.1333Search in Google Scholar

17. BinnemansK. Lanthanides and actinides in ionic liquids. Chem Rev2007;107:2592614.10.1021/cr050979cSearch in Google Scholar PubMed

18. SunX, LuoH, DaiS. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev2012;112:210028.10.1021/cr200193xSearch in Google Scholar PubMed

19. BillardI, OuadiA, GaillardC. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem2011;400:155566.10.1007/s00216-010-4478-xSearch in Google Scholar PubMed

20. BillardI, BünzliJ-CG,PecharskyVK.Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation? In: Handbook on the physics and chemistry of rare earths. Vol. 43, Chapter 256. Amsterdam: Elsevier Science, 2013:21373.Search in Google Scholar

21. GreskyT,BruceFR. The separation of U-233 and Thorium from fission products by solvent extraction. In: Progress in nuclear energy, series 111, Process chemistry, Vol. 1. New York: McGraw-Hill, 1956.Search in Google Scholar

22. NaylorA, WilsonPD. Recovery of Uranium and Plutonium from Irradiated Nuclear Fuel. In: LoTC, BairdMH, HansonC, editors. Handbook of solvent extraction. New York, USA: John Wiley & Sons, 1983:783.Search in Google Scholar

23. AnsariSA, PathakPN, MohapatraPK, ManchandaVK. Aqueous Partitioning of Minor Actinides by Different Processes. Sep Purif Rev2011;40:4173.10.1080/15422119.2010.545466Search in Google Scholar

24. AnsariSA, PathakPN, MohapatraPK, ManchandaVK. Chemistry of Diglycolamides: Promising Extractants for Actinide Partitioning. Chem Rev2012;112:175177.10.1021/cr200002fSearch in Google Scholar PubMed

25. MathurJN, MuraliMS, NashKL. Actinide partitioning – a review. Solvent Extr Ion Exc2001;19:35790.10.1081/SEI-100103276Search in Google Scholar

26. AnsariSA, PrabhuDR, GujarRB, KanekarAS, RajeswariB, KulkarniMJ, et al. Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Sep Purif Technol2009;66:11824.10.1016/j.seppur.2008.11.019Search in Google Scholar

27. GujarRB, AnsariSA, PrabhuDR, PathakPN, SenguptaA, ThulasidasSK, et al. Actinide partitioning with a modified TODGA solvent: counter-current extraction studies with simulated high level waste. Solvent Extr Ion Exc2012;30:15670.10.1080/07366299.2011.609392Search in Google Scholar

28. ModoloG, AspH, SchreinemachersC, VijgenV. Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: batch extraction optimization studies and stability tests. Solvent Extr Ion Exc2007;25:70321.10.1080/07366290701634578Search in Google Scholar

29. ShenY, TanX, WangL, WuW. Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep Purif Technol2011;78:298302.10.1016/j.seppur.2011.01.042Search in Google Scholar

30. ShenY, WangS, ZhuL, WangJ, WuW. Extraction of Th(IV) from an HNO3 solution by diglycolamide in ionic liquids. Ind Eng Chem Res2011;50:139906.10.1021/ie102512mSearch in Google Scholar

31. ZhuZX, SasakiY, SuzukiH, SuzukiS, KimuraT. Cumulative study on solvent extraction of elements by N,N,N’,N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal Chim Acta2004;527:1638.10.1016/j.aca.2004.09.023Search in Google Scholar

32. MincherME, QuachDL, LiaoYJ, MincherBJ, WaiCM. The partitioning of americium and the lanthanides using tetrabutyl diglycolamide (TBDGA) in octanol and in ionic liquid solution. Solvent Extr Ion Exc2012;30:73547.10.1080/07366299.2012.700583Search in Google Scholar

33. ShimojoK, KurahashiK, NaganawaH. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans2008;50838.10.1039/b810277pSearch in Google Scholar PubMed

34. PanjaS, MohapatraPK, TripathiSC, GandhiPM, JanardanP. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol2012;96:28995.10.1016/j.seppur.2012.06.015Search in Google Scholar

35. HuangX, ZhangQ, LiuJ, HeH, ZhuW, WangX. Solvent extraction of Pu(IV) with TODGA in C6mimTf2N. J Radioanal Nucl Chem2013;298:416.10.1007/s10967-013-2439-5Search in Google Scholar

36. AnsariSA, PathakPN, ManchandaVK, HussainM, PrasadA, ParmarVS. N,N,N0,N0-tetraoctyl diglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exc2005;23:46379.10.1081/SEI-200066296Search in Google Scholar

37. SasakiY, SugoY, SuzukiS, TachimoriS. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3n-dodecane system. Solvent Extr Ion Exc2001;19:91103.10.1081/SEI-100001376Search in Google Scholar

38. GujarRB, AnsariSA, MuraliMS, MohapatraPK, ManchandaVK. J Radioanal Nucl Chem. Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning’ 2010;284:377385.Search in Google Scholar

39. PrathibhaT, VenkatesanKA, Robert SelvanB, AntonyMP, Vasudeva RaoPR. Anomalous extraction behavior of Americium(III) in some diglycolamide isomers present in ionic liquid medium. Radiochim Acta2012;100:90713.10.1524/ract.2012.1982Search in Google Scholar

40. ZhangY, LiuZ, FanF, ZhuL, ShenY. Extraction of Uranium and Thorium from Nitric Acid Solution by TODGA in Ionic Liquids. Sep Sci Technol2014;49:1895902.10.1080/01496395.2014.903279Search in Google Scholar

41. JanczewskiD, ReinhoudtDN, VerboomW, HillC, AllignolC, DuchesneMT. Tripodal diglycolamides as highly efficient extractants for f-elements. New J Chem2008;32:4905.10.1039/B715671ESearch in Google Scholar

42. MohapatraPK, IqbalM, RautDR, VerboomW, HuskensJ, GodboleSV. Complexation of novel diglycolamide functionalized calix[4]arenes: Unusual extraction behaviour, transport, and fluorescence studies. Dalton Trans2012;41:3603.10.1039/C1DT11561HSearch in Google Scholar

43. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans2012;41:69709.10.1039/c2dt12364aSearch in Google Scholar PubMed

44. MohapatraPK, SenguptaA, IqbalM, HuskensJ, VerboomW. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem2013;52:253341.10.1021/ic302497kSearch in Google Scholar PubMed

45. MohapatraPK, SenguptaA, IqbalM, HuskensJ, GodboleSV, VerboomW. Remarkable acidity independent actinide extraction with a both-side diglycolamide-functionalized calix[4]arene. Dalton Trans2013;42:855862.10.1039/c3dt50557jSearch in Google Scholar PubMed

46. SenguptaA, MohapatraPK, IqbalM, VerboomW, HuskensJ, GodboleSV. Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing. RSC Adv2012;2:7492500.10.1039/c2ra20577gSearch in Google Scholar

47. TohSL, McFarlaneJ, TsourisC, DePaoliDW, LuoH, DaiS. Room temperature ionic liquids in liquid–liquid extraction: effects of solubility in aqueous solutions on surface properties. Solvent Extr Ion Exc2006;24:3356.10.1080/07366290500388400Search in Google Scholar

48. VisserE, SwatloskiRP, ReichertWM, MaytonR, SheffS, WierzbickiA, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun2001;1356.10.1039/b008041lSearch in Google Scholar

49. VisserAE, SwatloskiRP, ReichertWM, MaytonR, SheffS, WierzbickiA, et al. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol2002;36:25239.10.1021/es0158004Search in Google Scholar PubMed

50. MohapatraPK, SenguptaA, IqbalM, HuskensJ, VerboomW. Highly efficient diglycolamide-based task-specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem Eur J2013;19:32308.10.1002/chem.201203321Search in Google Scholar PubMed

51. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies. Sep Purif Technol2013;118:26470.10.1016/j.seppur.2013.07.005Search in Google Scholar

52. MohapatraPK, KandwalP, IqbalM, HuskensJ, MuraliMS, VerboomW. A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans2013;42:43437.10.1039/c3dt32967dSearch in Google Scholar PubMed

53. Bonnaffé-MoityM, OuadiA, MazanV, MiroshnichenkoS, TernovaD, GeorgS, et al. Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans2012;41:752636.10.1039/c2dt12421aSearch in Google Scholar PubMed

54. WuY, ZhangY, FanF, LuoH, HuP, ShenY. Synthesis of task-specific ionic liquids with grafted diglycolamide moiety. Complexation and stripping of lanthanides. J Radioanal Nucl Chem2014;299:121318.10.1007/s10967-013-2878-zSearch in Google Scholar

55. SenguptaA, GodboleSV, MohapatraPK, IqbalM, HuskensJ, VerboomW. Judd–Ofelt parameters of diglycolamide-functionalized calix[4]arene Eu3+ complexes in room temperature ionic liquid for structural analysis: effects of solvents and ligand stereochemistry. J Luminescence2014;148:17480.10.1016/j.jlumin.2013.12.009Search in Google Scholar

56. SenguptaA, MohapatraPK, IqbalM, HuskensJ, VerboomW. Spectroscopic investigations of Eu3+ – complexes with ligands containing multiple diglycolamide pendant arms in a room temperature ionic liquid. J Luminescence2014;154:392401.10.1016/j.jlumin.2014.05.001Search in Google Scholar

57. PathakPN, AnsariSA, GodboleSV, DhobaleAR, ManchandaVK. Interaction of Eu3+with N,N,N’,N’-tetraoctyl diglycolamide: A time resolved luminescence spectroscopy study. Spectrochim Acta2009;A73:348.10.1016/j.saa.2009.02.040Search in Google Scholar PubMed

58. NashKL, ChoppinGR. The thermodynamics of synergistic solvent extraction of zinc(II). J Inorg Nucl Chem1977;39:131.10.1016/0022-1902(77)80447-8Search in Google Scholar

59. GurneyRW. Ionic processes in solution. New York: McGraw-Hill, 1953.Search in Google Scholar

60. SenguptaA, MohapatraPK, KadamRM, MannaD, GhantyTK, IqbalM, et al. Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: extraction, luminescence, theoretical and EPR investigations. RSC Adv2014;4:4661323.10.1039/C4RA05798HSearch in Google Scholar

61. SpinksJW, WoodsRJ. Introduction to radiation chemistry. New York: Wiley Interscience, 1990.Search in Google Scholar

62. AllenD, BastonG, BradelyAE, GormanT,HaileA,HamblettI. et al. An investigation of the radiochemical stability of ionic liquids. Green Chem2002;4:152 2002.10.1039/b111042jSearch in Google Scholar

63. BeharD, GonzalezC, NetaP. Reaction Kinetics in Ionic Liquids: Pulse Radiolysis Studies of 1-Butyl-3-methylimidazolium Salts. J Phys Chem A2001;105:7607.10.1021/jp011405oSearch in Google Scholar

64. MarcinekA, ZielonkaJ, GebickiJ, GordonCM, DunkinIR. Ionic Liquids: Novel Media for Characterization of Radical Ions. J Phys Chem A2001;105:9305.10.1021/jp0117718Search in Google Scholar

65. BerthonL, NikitenkoSI, BiselI, BerthonC, FauconM, SaucerotteB, et al. Influence of gamma irradiation on hydrophobic room- temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N. Dalton Trans2006;252634.10.1039/b601111jSearch in Google Scholar PubMed

66. Jagadeeswara RaoCH, VenkatesanKA, TataBV, NagarajanK, SrinivasanTG, Vasudeva RaoPR. Radiation stability of some room temperature ionic liquids. Radiat Phys Chem2011;80:6439.10.1016/j.radphyschem.2011.01.012Search in Google Scholar

67. YuanL, PengJ, XuL, ZhaiM, LiJ, WeiG. Influence of γ-radiation on the ionic liquid [C4mim][PF6] during extraction of strontium ions. Dalton Trans2008;635860.10.1039/b811413gSearch in Google Scholar PubMed

68. NakashimaK, KubotaF, MaruyamaT, GotoM. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind Eng Chem Res2005;44:436872.10.1021/ie049050tSearch in Google Scholar

Published Online: 2015-4-21
Published in Print: 2015-6-1

©2015 by De Gruyter

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2014-0030/html
Scroll to top button