Abstract
Metallic materials are widely utilized in the fields of industry, agriculture, transportation and daily life for their high mechanical strength, and relatively low cost. However, the microorganisms that are widely distributed in surroundings can have complicated interactive reactions with metallic materials. The microbiologically influenced corrosion (MIC) has caused serious economic losses and resource wastage for human society. To date, great efforts have been made in the mechanism of MIC and control methods. This work describes the research findings on MIC developed in the recent years, and studies on the common microbial species that affect metal corrosion. The other aim of this paper is to review the accelerating or inhibiting mechanism in metal corrosion. Also, it provides an outlook for research on MIC.
Funding source: Research Foundation of Chongqing University of Science and Technology
Award Identifier / Grant number: No. ckrc2020025
Funding source: Research Program of Chongqing Municipal Education Commission
Award Identifier / Grant number: No. KJZD–M201901502
Funding source: Science and Technology Innovation Program of "The Construction of The Chengdu–Chongqing Economic Circle"
Award Identifier / Grant number: No. KJCX2020050
Funding source: Innovation Program for Graduate Students of Chongqing University of Science and Technology
Award Identifier / Grant number: No. YKJCX2020608
Funding source: Natural Science Foundation Project of Chongqing
Award Identifier / Grant number: No. cstc2019jcyj-msxmX0562
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: No. 51778097
Funding source: the Science and Technology Research Program of Chongqing Municipal Education Commission
Award Identifier / Grant number: No. KJQN202001515
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by Science and Technology Innovation Program of “the construction of the Chengdu–Chongqing economic circle” (no. KJCX2020050), Research Foundation of Chongqing University of Science and Technology (no. ckrc2020025), Innovation Program for Graduate Students of Chongqing University of Science and Technology (no. YKJCX2020608), Natural Science Foundation of China (no. 51778097), Research Program of Chongqing Municipal Education Commission (KJZD–M201901502).
-
Conflicts of interest: The authors declare no conflicts of interest regarding this article.
References
Abdolahi, A., Hamzah, E., Ibrahim, Z., and Hashim, S. (2014). Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corros. Rev. 32: 129–141. https://doi.org/10.1515/corrrev-2013-0047.Search in Google Scholar
Bedoya-Zapata, A.D., Franco-Rendon, C.M., Leon-Henao, H., Santa, J.F., and Barrada, J.E.G. (2021). Failure analysis of a welded stainless-steel piping system with premature pitting. Eng. Fail. Anal. 119: 104986. https://doi.org/10.1016/j.engfailanal.2020.104986.Search in Google Scholar
Brix, A., Cafora, M., Aureli, M., and Pistocchi, A. (2020). Animal models to translate phage therapy to human medicine. Int. J. Mol. Sci. 21: 3715. https://doi.org/10.3390/ijms21103715.Search in Google Scholar PubMed PubMed Central
Carpen, L., Rajala, P., and Bomberg, M. (2018). Corrosion of copper in anoxic ground water in the presence of SRB. Corros. Sci. Technol.–Korea 17: 147–153, doi:https://doi.org/10.14773/cst.2018.17.4.147.Search in Google Scholar
Chandra, K., Mahanti, A., Singh, A.P., Kain, V., and Gujar, H.G. (2019). Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger. Eng. Fail. Anal. 105: 1328–1339. https://doi.org/10.1016/j.engfailanal.2019.08.005.Search in Google Scholar
Chang, Y. (2020). Bacteriophage-derived endolysins applied as potent biocontrol agents to enhance food safety. Microorganisms 8: 724. https://doi.org/10.3390/microorganisms8050724.Search in Google Scholar PubMed PubMed Central
Chen, R., Liu, H., Tong, M., Zhao, L., Zhang, P., Liu, D., and Yuan, S. (2018). Impact of Fe(Ⅱ) oxidation in the presence of iron-reducing bacteria on subsequent Fe(Ⅲ) bio-reduction. Sci. Total Environ. 639: 1007–1014. https://doi.org/10.1016/j.scitotenv.2018.05.241.Search in Google Scholar PubMed
Chen, S. and Zhang, D. (2018). Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria. Corros. Sci. 136: 275–284. https://doi.org/10.1016/j.corsci.2018.03.017.Search in Google Scholar
Chen, S.Q. and Zhang, D. (2019). Corrosion behavior of Q235 carbon steel in air-saturated seawater containing Thalassospira sp. Corros. Sci. 148: 71–82. https://doi.org/10.1016/j.corsci.2018.11.031.Search in Google Scholar
Cifuentes, G.R., Jimenez-Millan, J., Quevedo, C.P., Galvez, A., Castellanos-Rozo, J., and Jimenez-Espinosa, R. (2021). Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): the role of bacterial communities. Sci. Total Environ. 762: 143113. https://doi.org/10.1016/j.scitotenv.2020.143113.Search in Google Scholar PubMed
Cui, L.Y., Liu, Z.Y., Xu, D.K., Hu, P., Shao, J.M., Du, C.W., and Li, X.G. (2020). The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization. Corros. Sci. 174: 108842. https://doi.org/10.1016/j.corsci.2020.108842.Search in Google Scholar
Cui, Y.Y., Qin, Y.X., Ding, Q.M., and Gao, Y.N. (2021). Study on corrosion behavior of X80 steel under stripping coating by sulfate reducing bacteria. BMC Biotechnol. 21: 5. https://doi.org/10.1186/s12896-020-00664-5.Search in Google Scholar PubMed PubMed Central
D’Herelle, F. (1917). An invisible antagonist microbe of dysentery bacillus. C. R. Hebd. Seances Acad. Sci. 165: 373–375. https://doi.org/10.5962/bhl.part.1215.Search in Google Scholar
Dall’agnol, L.T., Cordas, C.M., and Moura, J.J. (2014). Influence of respiratory substrate in carbon steel corrosion by a sulphate reducing prokaryote model organism. Bioelectrochemistry 97: 43–51. https://doi.org/10.1016/j.bioelechem.2013.10.006.Search in Google Scholar PubMed
de Romero, M. (2005). The mechanism of SRB action in MIC, based on sulfide corrosion and iron sulfide corrosion products. Corrosion 05481: 1–30.Search in Google Scholar
Deng, X., Dohmae, N., Nealson, K.H., Hashimoto, K., and Okamoto, A. (2018). Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci. Adv. 4: eaao5682. https://doi.org/10.1126/sciadv.aao5682.Search in Google Scholar PubMed PubMed Central
Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M., and Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms. Nature 427: 829–832. https://doi.org/10.1038/nature02321.Search in Google Scholar PubMed
Dong, Y.Q., Jiang, B.T., Xu, D.K., Jiang, C.Y., Li, Q., and Gu, T.Y. (2018). Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry 123: 34–44. https://doi.org/10.1016/j.bioelechem.2018.04.014.Search in Google Scholar PubMed
Dou, W., Jia, R., Jin, P., Liu, J., Chen, S., and Gu, T. (2018). Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros. Sci. 144: 237–248. https://doi.org/10.1016/j.corsci.2018.08.055.Search in Google Scholar
Dou, W., Liu, J., Cai, W., Wang, D., Jia, R., Chen, S., and Gu, T. (2019). Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros. Sci. 150: 258–267. https://doi.org/10.1016/j.corsci.2019.02.005.Search in Google Scholar
Dou, W., Pu, Y., Han, X., Song, Y., Chen, S., and Gu, T. (2020). Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry 133: 107478. https://doi.org/10.1016/j.bioelechem.2020.107478.Search in Google Scholar PubMed
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., and Newman, D.K. (2002). Microbial iron respiration can protect steel from corrosion. Appl. Environ. Microbiol. 68: 1440–1445. https://doi.org/10.1128/aem.68.3.1440-1445.2002.Search in Google Scholar
Durliat, H., Barrau, M.B., and Comtat, M. (1988). Fad used as a mediator in the electron-transfer between platinum and several biomolecules. Bioelectrochem. Bioenerg. 19: 413–423. https://doi.org/10.1016/0302-4598(88)80022-9.Search in Google Scholar
Elshafei, A.A., Moussa, M.N.H., and Elfar, A.A. (1997). Inhibitory effect of amino acids on Al pitting corrosion in 0.1 M NaCl. J. Appl. Electrochem. 27: 1075–1078. https://doi.org/10.1023/a:1018490727290.10.1023/A:1018490727290Search in Google Scholar
Fischer, K.M., Batstone, D.J., Van Loosdrecht, M.C., and Picioreanu, C. (2015). A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria. Bioelectrochemistry 102: 10–20. https://doi.org/10.1016/j.bioelechem.2014.11.002.Search in Google Scholar PubMed
Fragiel, A., Serna, S., Malo-Tamayo, J., Silva, P., Campillo, B., Martinez-Martinez, E., Cota, L., Staia, M.H., Puchi-Cabrera, E.S., and Perez, R. (2019). Effect of microstructure and temperature on the stress corrosion cracking of two microalloyed pipeline steels in H2S environment for gas transport. Eng. Fail. Anal. 105: 1055–1068. https://doi.org/10.1016/j.engfailanal.2019.06.028.Search in Google Scholar
Gaines, R.H. (1910). Bacterial activity as a corrosive influence in the soil. J. Ind. Eng. Chem. 2: 128–130. https://doi.org/10.1021/ie50016a003.Search in Google Scholar
Goni, L.K.M.O., Mazumder, M.A.J., Ali, S.A., Nazal, M.K., and Al-Muallem, H.A. (2019). Biogenic amino acid methionine-based corrosion inhibitors of mild steel in acidic media. Int. J. Miner. Metall. Mater. 26: 467–482. https://doi.org/10.1007/s12613-019-1754-4.Search in Google Scholar
Grami, E., Salhi, N., Sealey, K.S., Hafiane, A., Ouzari, H.I., and Saidi, N. (2021). Siphoviridae bacteriophage treatment to reduce abundance and antibiotic resistance of Pseudomonas aeruginosa in wastewater. Int. J. Environ. Sci. Technol.https://doi.org/10.1007/s13762-021-03366-3.Search in Google Scholar
Gu, T., Jia, R., Unsal, T., and Xu, D. (2019). Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J. Mater. Sci. Technol. 35: 631–636. https://doi.org/10.1016/j.jmst.2018.10.026.Search in Google Scholar
Guo, Z., Liu, T., Cheng, Y.F., Guo, N., and Yin, Y. (2017). Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion. Colloids Surf. B Biointerfaces 157: 157–165. https://doi.org/10.1016/j.colsurfb.2017.05.045.Search in Google Scholar PubMed
Guo, Z.W., Pan, S., Liu, T., Zhao, Q.Y., Wang, Y.N., Guo, N., Chang, X.T., Liu, T., Dong, Y.H., and Yin, Y.S. (2019). Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater. Front. Microbiol. 10: 1111. https://doi.org/10.3389/fmicb.2019.01111.Search in Google Scholar PubMed PubMed Central
Garrett, J.H. (1891). The action of water on lead. London: H. K. Lewis.Search in Google Scholar
Herrera, L.K. and Videla, H.A. (2009). Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63: 891–895. https://doi.org/10.1016/j.ibiod.2009.06.003.Search in Google Scholar
Hsu, L., Deng, P., Zhang, Y.X., Nguyen, H.N., and Jiang, X.C. (2018). Nanostructured interfaces for probing and facilitating extracellular electron transfer. J. Mater. Chem. B 6: 7144–7158. https://doi.org/10.1039/c8tb01598h.Search in Google Scholar PubMed
Iverson, W.P. (1987). Microbial corrosion of metals. Adv. Appl. Microbiol. 32: 1–36. https://doi.org/10.1016/s0065-2164(08)70077-7.Search in Google Scholar
Javed, M.A., Stoddart, P.R., and Wade, S.A. (2015). Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions. Corros. Sci. 93: 48–57. https://doi.org/10.1016/j.corsci.2015.01.006.Search in Google Scholar
Jayaraman, A., Earthman, J.C., and Wood, T.K. (1997). Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 62–68. https://doi.org/10.1007/s002530050889.Search in Google Scholar
Jayaraman, A., Mansfeld, F.B., and Wood, T.K. (1999a). Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J. Ind. Microbiol. Biotechnol. 22: 167–175. https://doi.org/10.1038/sj.jim.2900627.Search in Google Scholar
Jayaraman, A., Ornek, D., Duarte, D.A., Lee, C.C., Mansfeld, F.B., and Wood, T.K. (1999b). Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl. Microbiol. Biotechnol. 52: 787–790. https://doi.org/10.1007/s002530051592.Search in Google Scholar PubMed
Jia, R., Unsal, T., Xu, D.K., Lekbach, Y., and Gu, T.Y. (2019). Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int. Biodeterior. Biodegrad. 137: 42–58. https://doi.org/10.1016/j.ibiod.2018.11.007.Search in Google Scholar
Jia, R., Yang, D., Abd Rahman, H.B., and Gu, T. (2017a). Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. Int. Biodeterior. Biodegrad. 125: 116–124. https://doi.org/10.1016/j.ibiod.2017.09.006.Search in Google Scholar
Jia, R., Yang, D., Xu, J., Xu, D., and Gu, T. (2017b). Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 127: 1–9. https://doi.org/10.1016/j.corsci.2017.08.007.Search in Google Scholar
Jia, R., Yang, D.Q., Xu, D.K., and Gu, T.Y. (2017c). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry 118: 38–46. https://doi.org/10.1016/j.bioelechem.2017.06.013.Search in Google Scholar PubMed
Kato, S. (2016). Microbial extracellular electron transfer and its relevance to iron corrosion. Microb. Biotechnol. 9: 141–148. https://doi.org/10.1111/1751-7915.12340.Search in Google Scholar PubMed PubMed Central
Khan, M.S., Yang, C., Zhao, Y., Pan, H., Zhao, J., Shahzad, M.B., Kolawole, S.K., Ullah, I., and Yang, K. (2020). An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis. Colloids Surf. B Biointerfaces 189: 110858. https://doi.org/10.1016/j.colsurfb.2020.110858.Search in Google Scholar PubMed
Kotu, S.P., Mannan, M.S., and Jayaraman, A. (2019). Emerging molecular techniques for studying microbial community composition and function in microbiologically influenced corrosion. Int. Biodeterior. Biodegrad. 144: 104722. https://doi.org/10.1016/j.ibiod.2019.104722.Search in Google Scholar
Krantz, G.P., Lucas, K., Wunderlich, E.L., Hoang, L.T., Avci, R., Siuzdak, G., and Fields, M.W. (2019). Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm. Biofouling 35: 669–683. https://doi.org/10.1080/08927014.2019.1646731.Search in Google Scholar PubMed
Kremser, K., Thallner, S., Strbik, D., Spiess, S., Kucera, J., Vaculovic, T., Vsiansky, D., Haberbauer, M., Mandl, M., and Guebitz, G.M. (2021). Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. J. Environ. Manage. 280: 111734. https://doi.org/10.1016/j.jenvman.2020.111734.Search in Google Scholar PubMed
Kuang, F., Wang, J., Yan, L., and Zhang, D. (2007). Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochim. Acta 52: 6084–6088. https://doi.org/10.1016/j.electacta.2007.03.041.Search in Google Scholar
Lai, R., Li, Q., Cheng, C., Shen, H., Liu, S., Luo, Y., Zhang, Z., and Sun, S. (2020). Bio-competitive exclusion of sulfate-reducing bacteria and its anticorrosion property. J. Pet. Sci. Eng. 194: 107480. https://doi.org/10.1016/j.petrol.2020.107480.Search in Google Scholar
Lanneluc, I., Langumier, M., Sabot, R., Jeannin, M., Refait, P., and Sable, S. (2015). On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. Int. Biodeterior. Biodegrad. 99: 55–65. https://doi.org/10.1016/j.ibiod.2015.01.003.Search in Google Scholar
Lee, A.K. and Newman, D.K. (2003). Microbial iron respiration: impacts on corrosion processes. Appl. Microbiol. Biotechnol. 62: 134–139. https://doi.org/10.1007/s00253-003-1314-7.Search in Google Scholar PubMed
Li, D.P., Zhang, L., Yang, J.W., Lu, M.X., Ding, J.H., and Liu, M.L. (2014). Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2. Int. J. Miner. Metall. Mater. 21: 388–394. https://doi.org/10.1007/s12613-014-0920-y.Search in Google Scholar
Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., et al.. (2016). Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Sci. Rep. 6: 20190. https://doi.org/10.1038/srep20190.Search in Google Scholar PubMed PubMed Central
Li, J., Liu, Z., Lou, Y., Du, C., and Li, X. (2020). Evidencing the uptake of electrons from X80 steel by Bacillus licheniformis with redox probe, 5-cyano-2,3-ditolyl tetrazolium chloride. Corros. Sci. 168: 108569. https://doi.org/10.1016/j.corsci.2020.108569.Search in Google Scholar
Li, S., Li, L., Qu, Q., Kang, Y., Zhu, B., Yu, D., and Huang, R. (2019a). Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel. Colloids Surf. B Biointerfaces 173: 139–147. https://doi.org/10.1016/j.colsurfb.2018.09.059.Search in Google Scholar PubMed
Li, S., Qu, Q., Li, L., Xia, K., Li, Y., and Zhu, T. (2019b). Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater. Water Res. 166: 115094. https://doi.org/10.1016/j.watres.2019.115094.Search in Google Scholar PubMed
Li, Y.C., Xu, D.K., Chen, C.F., Li, X.G., Jia, R., Zhang, D.W., Sand, W., Wang, F.H., and Gu, T.Y. (2018). Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J. Mater. Sci. Technol. 34: 1713–1718. https://doi.org/10.1016/j.jmst.2018.02.023.Search in Google Scholar
Little, B., Wagner, P., Hart, K., Ray, R., Lavoie, D., Nealson, K., and Aguilar, C. (1998). The role of biomineralization in microbiologically influenced corrosion. Biodegradation 9: 1–10. https://doi.org/10.1023/a:1008264313065.10.1023/A:1008264313065Search in Google Scholar PubMed
Little, B.J., Blackwood, D.J., Hinks, J., Lauro, F.M., Marsili, E., Okamoto, A., Rice, S.A., Wade, S.A., and Flemming, H.C. (2020). Microbially influenced corrosion—Any progress? Corros. Sci. 170: 108641. https://doi.org/10.1016/j.corsci.2020.108641.Search in Google Scholar
Liu, B., Sun, M., Lu, F., Du, C., and Li, X. (2021). Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil. Colloids Surf. B Biointerfaces 197: 111356. https://doi.org/10.1016/j.colsurfb.2020.111356.Search in Google Scholar PubMed
Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., and Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 100: 484–495. https://doi.org/10.1016/j.corsci.2015.08.023.Search in Google Scholar
Liu, H., Gu, T., Zhang, G., Cheng, Y., Wang, H., and Liu, H. (2016a). The effect of magnetic field on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corros. Sci. 102: 93–102. https://doi.org/10.1016/j.corsci.2015.09.023.Search in Google Scholar
Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., and Liu, H. (2016b). Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros. Sci. 105: 149–160. https://doi.org/10.1016/j.corsci.2016.01.012.Search in Google Scholar
Liu, H., Liu, H., and Zhang, Y. (2020). Galvanic corrosion due to a heterogeneous sulfate reducing bacteria biofilm. Coatings 10: 1116. https://doi.org/10.3390/coatings10111116.Search in Google Scholar
Lv, M.Y. and Du, M. (2018). A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev. Environ. Sci. Biotechnol. 17: 431–446. https://doi.org/10.1007/s11157-018-9473-2.Search in Google Scholar
Lv, M.Y., Du, M., Li, X., Yue, Y.Y., and Chen, X.C. (2019). Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. J. Mater. Res. Technol. 8: 4066–4078. https://doi.org/10.1016/j.jmrt.2019.07.016.Search in Google Scholar
Mathewa, E.R., Barnett, D., Petrovski, S., and Franks, A.E. (2018). Reviewing microbial electrical systems and bacteriophage biocontrol as targeted novel treatments for reducing hydrogen sulfide emissions in urban sewer systems. Rev. Environ. Sci. Biotechnol. 17: 749–764.10.1007/s11157-018-9483-0Search in Google Scholar
Morales, J., Esparza, P., Gonzalez, S., Salvarezza, R., and Arevalo, M.P. (1993). The role of Pseudomonas aeruginosa on the localized corrosion of 304-stainless steel. Corros. Sci. 34: 1531–1540. https://doi.org/10.1016/0010-938x(93)90246-d.Search in Google Scholar
Moreira, R., Schutz, M.K., Libert, M., Tribollet, B., and Vivier, V. (2014). Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: local electrochemical investigations. Bioelectrochemistry 97: 69–75. https://doi.org/10.1016/j.bioelechem.2013.10.003.Search in Google Scholar PubMed
Nasser, B., Saito, Y., Alarawi, M., Al-Humam, A.A., Mineta, K., and Gojobori, T. (2021). Characterization of microbiologically influenced corrosion by comprehensive metagenomic analysis of an inland oil field. Gene 774: 145425. https://doi.org/10.1016/j.gene.2021.145425.Search in Google Scholar PubMed
Ornek, D., Jayaraman, A., Syrett, B.C., Hsu, C.H., Mansfeld, F.B., and Wood, T.K. (2002). Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate. Appl. Microbiol. Biotechnol. 58: 651–657. https://doi.org/10.1007/s00253-002-0942-7.Search in Google Scholar PubMed
Parthipan, P., Sabarinathan, D., Angaiah, S., and Rajasekar, A. (2018). Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. J. Mol. Liq. 261: 473–479. https://doi.org/10.1016/j.molliq.2018.04.045.Search in Google Scholar
Pedramfar, A., Beheshti maal, K., and Mirdamadian, S.H. (2017). Phage therapy of corrosion-producing bacterium Stenotrophomonas maltophilia using isolated lytic bacteriophages. Anti-corros. Methods Mater. 64: 607–612. https://doi.org/10.1108/acmm-02-2017-1755.Search in Google Scholar
Pokhmurs’kyi, V.I., Karpenko, O.V., Zin’, I.M., Tymus’, M.B., and Veselivs’ka, H.H. (2014). Inhibiting action of biogenic surfactants in corrosive media. Mater. Sci. 50: 448–453, doi:https://doi.org/10.1007/s11003-014-9741-4.Search in Google Scholar
Pu, Y.N., Dou, W.W., Gu, T.Y., Tang, S.Y., Han, X.M., and Chen, S.G. (2020). Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa. J. Mater. Sci. Technol. 47: 10–19. https://doi.org/10.1016/j.jmst.2020.02.008.Search in Google Scholar
Qiu, L.N., Mao, Y.N., Gong, A.J., Tong, L., and Cao, Y.Q. (2015). Inhibition effect of thiobacillus denitrificans on the corrosion of X70 pipeline steel caused by sulfate-reducing bacteria in crude petroleum. Mater. Corros. – Werkst. Korros. 66: 588–593. https://doi.org/10.1002/maco.201307573.Search in Google Scholar
Reguera, G., Mccarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005). Extracellular electron transfer via microbial nanowires. Nature 435: 1098–1101. https://doi.org/10.1038/nature03661.Search in Google Scholar PubMed
Sachan, R. and Singh, A.K. (2019). Corrosion of steel due to iron oxidizing bacteria. Anti-corros. Methods Mater. 66: 19–26. https://doi.org/10.1108/acmm-05-2018-1928.Search in Google Scholar
Sachan, R., Singh, A.K., and Negi, Y.S. (2020). Study of microbially influenced corrosion in the presence of iron-oxidizing bacteria (strain DASEWM2). J. Bio- Tribo-Corros. 6: 109. https://doi.org/10.1007/s40735-020-00409-z.Search in Google Scholar
Salgar-Chaparro, S.J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A., and Machuca, L.L. (2020). Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms. Corros. Sci. 169: 108595. https://doi.org/10.1016/j.corsci.2020.108595.Search in Google Scholar
Salvarezza, R.C., Demele, M.F.L., and Videla, H.A. (1983). Mechanisms of the microbial corrosion of aluminum alloys. Corrosion 39: 26–32. https://doi.org/10.5006/1.3580810.Search in Google Scholar
Sanyal, B. (1981). Organic compounds as corrosion inhibitors in different environments – a review. Prog. Org. Coat. 9: 165–236. https://doi.org/10.1016/0033-0655(81)80009-x.Search in Google Scholar
Semenova, E.M., Ershov, A.P., Sokolova, D.S., Tourova, T.P., and Nazina, T.N. (2020). Diversity and biotechnological potential of nitrate-reducing bacteria from heavy-oil reservoirs (Russia). Microbiology 89: 685–696. https://doi.org/10.1134/s0026261720060168.Search in Google Scholar
Shen, Y.Y., Dong, Y.H., Dong, L.H., and Yin, Y.S. (2020). Corrosion inhibition effect of microorganism on 5754 Al alloy in seawater. Acta Metall. Sin. 56: 1681–1689, doi:https://doi.org/10.11900/0412.1961.2020.00129.Search in Google Scholar
Smith, J.A., Aklujkar, M., Risso, C., Leang, C., Giloteaux, L., and Holmes, D.E. (2015). Mechanisms involved in Fe(Ⅲ) respiration by the hyperthermophilic archaeon Ferroglobus placidus. Appl. Environ. Microbiol. 81: 2735–2744. https://doi.org/10.1128/aem.04038-14.Search in Google Scholar PubMed PubMed Central
Sowards, J.W. and Mansfield, E. (2014). Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corros. Sci. 87: 460–471. https://doi.org/10.1016/j.corsci.2014.07.009.Search in Google Scholar
Spark, A., Wang, K., Cole, I., Law, D., and Ward, L. (2020). Microbiologically influenced corrosion: a review of the studies conducted on buried pipelines. Corros. Rev. 38: 231–262. https://doi.org/10.1515/corrrev-2019-0108.Search in Google Scholar
Starosvetsky, J., Starosvetsky, D., Pokroy, B., Hilel, T., and Armon, R. (2008). Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros. Sci. 50: 540–547. https://doi.org/10.1016/j.corsci.2007.07.008.Search in Google Scholar
Su, H., Tang, R., Peng, X., Gao, A., and Han, Y. (2020). Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline. Bioelectrochemistry 132: 107406. https://doi.org/10.1016/j.bioelechem.2019.107406.Search in Google Scholar PubMed
Tan, F.Q., Wu, J.J., Zhang, D., Li, E., Sun, Y., and Gao, J.Y. (2018). Corrosion of Q235 carbon steel influenced by the introduction of aerogenic and aerobic bacteria. Mater. Corros. – Werkst. Korros. 69: 1196–1204. https://doi.org/10.1002/maco.201810086.Search in Google Scholar
Telegdi, J., Shaban, A., and Trif, L. (2020). Review on the microbiologically influenced corrosion and the function of biofilms. Int. J. Corros. Scale Inhib. 9: 1–33. https://doi.org/10.31044/1813-7016-2020-0-6-1-19.Search in Google Scholar
Tian, F., He, X., Bai, X., and Yuan, C. (2020). Electrochemical corrosion behaviors and mechanism of carbon steel in the presence of acid-producing bacterium Citrobacter farmeri in artificial seawater. Int. Biodeterior. Biodegrad. 147: 104872. https://doi.org/10.1016/j.ibiod.2019.104872.Search in Google Scholar
Twort, F.W. (1915). An investigation on the nature of ultra-microscopic viruses. Lancet 2: 1241–1243. https://doi.org/10.1016/s0140-6736(01)20383-3.Search in Google Scholar
Vigneron, A., Alsop, E.B., Chambers, B., Lomans, B.P., Head, I.M., and Tsesmetzis, N. (2016). Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl. Environ. Microbiol. 82: 2545–2554. https://doi.org/10.1128/aem.03842-15.Search in Google Scholar PubMed PubMed Central
Wadood, H.Z., Rajasekar, A., Farooq, A., Ting, Y.P., and Sabri, A.N. (2020). Biocorrosion inhibition of Cu70:Ni30 by Bacillus subtilis strain S1X and Pseudomonas aeruginosa strain ZK biofilms. J. Basic Microbiol. 60: 243–252. https://doi.org/10.1002/jobm.201900489.Search in Google Scholar PubMed
Wang, D., Liu, J., Jia, R., Dou, W., Kumseranee, S., Punpruk, S., Li, X., and Gu, T. (2020). Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros. Sci. 177: 108993. https://doi.org/10.1016/j.corsci.2020.108993.Search in Google Scholar
Wang, D., Xu, J., Wang, J., and Hu, W. (2021). Preparation and corrosion resistance of polyaspartic acid-zinc self-assembled film on carbon steel surface. Colloids Surf. A Physicochem. Eng. Asp. 608: 125615. https://doi.org/10.1016/j.colsurfa.2020.125615.Search in Google Scholar
Wang, L.W., Du, C.W., Liu, Z.Y., Wang, X.H., and Li, X.G. (2013). Influence of carbon on stress corrosion cracking of high strength pipeline steel. Corros. Sci. 76: 486–493. https://doi.org/10.1016/j.corsci.2013.06.051.Search in Google Scholar
Wu, J., Zhang, D., Wang, P., Cheng, Y., Sun, S., Sun, Y., and Chen, S. (2016). The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the corrosion of Q235 carbon steel in natural seawater. Corros. Sci. 112: 552–562. https://doi.org/10.1016/j.corsci.2016.04.047.Search in Google Scholar
Wurzler, N., Schutter, J.D., Wagner, R., Dimper, M., Hodoroaba, V.D., Lutzenkirchen-Hecht, D., and Ozcan, O. (2020a). Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins–Part Ⅱ: effect on biofilm formation and microbially influenced corrosion processes. Mater. Corros. – Werkst. Korros. 72: 983–994. https://doi.org/10.1002/maco.202012192.Search in Google Scholar
Wurzler, N., Schutter, J.D., Wagner, R., Dimper, M., Lutzenkirchen-Hecht, D., and Ozcan, O. (2020b). Abundance of Fe(Ⅲ) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens. Corros. Sci. 174: 108855. https://doi.org/10.1016/j.corsci.2020.108855.Search in Google Scholar
Xu, D.K., Li, Y.C., and Gu, T.Y. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110: 52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003.Search in Google Scholar PubMed
Yang, C., Dou, W., Pittman, C.C., Zhou, E., Xu, D., Li, H., Lekbach, Y., and Wang, F. (2020). Microbiologically influenced corrosion behavior of friction stir welded S32654 super austenitic stainless steel in the presence of Acidithiobacillus caldus SM-1 biofilm. Mater. Today Commun. 25: 101491. https://doi.org/10.1016/j.mtcomm.2020.101491.Search in Google Scholar
Yin, K., Liu, H.W., and Cheng, Y.F. (2018). Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating. Corros. Sci. 145: 271–282. https://doi.org/10.1016/j.corsci.2018.10.012.Search in Google Scholar
Zhang, P., Xu, D., Li, Y., Yang, K., and Gu, T. (2015). Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry 101: 14–21. https://doi.org/10.1016/j.bioelechem.2014.06.010.Search in Google Scholar PubMed
Zhao, H., Zhang, H., Chen, X., Mcdonald, A., and Li, H. (2020). Effect of Chlorella vulgaris biofilm adhesion on electrochemical behaviors of wire arc-sprayed aluminum coatings. J. Therm. Spray Technol. 29: 1991–2000. https://doi.org/10.1007/s11666-020-01113-7.Search in Google Scholar
Zhou, E., Wang, J., Moradi, M., Li, H., Xu, D., Lou, Y., Luo, J., Li, L., Wang, Y., Yang, Z., et al.. (2020). Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. J. Mater. Sci. Technol. 48: 72–83. https://doi.org/10.1016/j.jmst.2020.01.055.Search in Google Scholar
Zin, I.M., Pokhmurskll, V.I., Korniy, S.A., Karpenko, O.V., Lyon, S.B., Khlopyk, O.P., and Tymus, M.B. (2018). Corrosion inhibition of aluminium alloy by rhamnolipid biosurfactant derived from Pseudomonas sp PS-17. Anti-corros. Methods Mater. 65: 517–527. https://doi.org/10.1108/acmm-03-2017-1775.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- An overview of microbiologically influenced corrosion: mechanisms and its control by microbes
- Sulfamic acid is an environment-friendly alternative electrolyte for industrial acid cleaning and corrosion inhibition: a mini review
- Ideal corrosion inhibitors: a review of plant extracts as corrosion inhibitors for metal surfaces
- Original Articles
- Improved corrosion inhibition by heterocyclic compounds on mild steel in acid medium
- Prediction and mitigation of AC interference on the pipeline system
- Kinetics and mechanistic reaction pathway of carbon steel dissolution in simulated CO2–H2S medium in the presence of formic acid
- Corrosion behavior of low carbon steels and other non-ferrous metals exposed to a real calcareous soil environment
- Retraction Note
- Retraction of: Resistance to chemical attack of cement composites impregnated with a special polymer sulfur composite
Articles in the same Issue
- Frontmatter
- Reviews
- An overview of microbiologically influenced corrosion: mechanisms and its control by microbes
- Sulfamic acid is an environment-friendly alternative electrolyte for industrial acid cleaning and corrosion inhibition: a mini review
- Ideal corrosion inhibitors: a review of plant extracts as corrosion inhibitors for metal surfaces
- Original Articles
- Improved corrosion inhibition by heterocyclic compounds on mild steel in acid medium
- Prediction and mitigation of AC interference on the pipeline system
- Kinetics and mechanistic reaction pathway of carbon steel dissolution in simulated CO2–H2S medium in the presence of formic acid
- Corrosion behavior of low carbon steels and other non-ferrous metals exposed to a real calcareous soil environment
- Retraction Note
- Retraction of: Resistance to chemical attack of cement composites impregnated with a special polymer sulfur composite