Home Lipoxin A4 methyl ester alleviates vascular cognition impairment by regulating the expression of proteins related to autophagy and ER stress in the rat hippocampus
Article
Licensed
Unlicensed Requires Authentication

Lipoxin A4 methyl ester alleviates vascular cognition impairment by regulating the expression of proteins related to autophagy and ER stress in the rat hippocampus

  • Yanqiu Jia , Wei Jin , Yining Xiao , Yanhong Dong , Tianjun Wang , Mingyue Fan , Jing Xu , Nan Meng , Ling Li and Peiyuan Lv EMAIL logo
Published/Copyright: July 24, 2015
Become an author with De Gruyter Brill

Abstract

Since autophagy and endoplasmic reticulum stress mechanisms are involved in some neurodegenerative and cerebral vascular diseases, we suspected that similar mechanisms might participate in vascular cognitive impairments induced by chronic cerebral hypoperfusion. Lipoxin A4 methyl ester (LXA4 ME) is an inflammation inhibitor that exhibits potent protective effects in experimental stroke models. In an earlier study, we found that LXA4 ME improved cognitive deficit in a rat model of vascular cognitive impairment created using bilateral common carotid artery ligation (BCCAL) and two-vessel occlusion (2VO). In this study, LXA4 ME treatment of 2VO rats improved brain morphological defects. We found that LXA4 ME reduced the expression of some autophagy- and ERS-related factors in the hippocampus of 2VO rats, namely C/EBP homologous protein, beclin1 and the ratio of microtubule-associated protein light chain 3 II (LC3-II) to LC3-I. By contrast, LXA4 ME upregulated the protein expression of phospho-mTOR, total-mTOR, glucose-regulated protein 78 and spliced and unspliced X-box binding protein-1 mRNA. Differential protein regulation by LXA4 ME might underlie its ability to protect cognition after chronic cerebral hypoperfusion

References

1. Pimentel-Coelho, P.M., Michaud, J.P. and Rivest, S. Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiol. Aging 34 (2013) 679-693.Search in Google Scholar

2. Juurlink, B.H. The evidence for hypoperfusion as a factor in multiple sclerosis lesion development. Mult. Scler. Int. 2013 (2013) 598093.Search in Google Scholar

3. Abe, Y., Kachi, T., Kato, T., Arahata, Y., Yamada, T., Washimi, Y., Iwai, K., Ito, K., Yanagisawa, N. and Sobue, G. Occipital hypoperfusion in Parkinson's disease without dementia: correlation to impaired cortical visual processing. J. Neurol. Neurosurg. Psychiatry 74 (2003) 419-422.10.1136/jnnp.74.4.419Search in Google Scholar PubMed PubMed Central

4. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4 (2003) 49-60.Search in Google Scholar

5. Bence, N.F., Sampat, R.M. and Kopito, R.R. Impairment of the ubiquitinproteasome system by protein aggregation. Science 292 (2001) 1552-1555.Search in Google Scholar

6. Taylor, J.P., Hardy, J. and Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296 (2002) 1991-1995.Search in Google Scholar

7. Bennett, S.A., Pappas, B.A., Stevens, W.D., Davidson, C.M., Fortin, T. and Chen, J. Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion. Neurobiol. Aging 21 (2000) 207-214.Search in Google Scholar

8. Takuma, K., Yan, S.S., Stern, D.M. and Yamada, K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J. Pharmacol. Sci. 97 (2005) 312-316.Search in Google Scholar

9. Nixon, R.A., Wegiel, J., Kumar, A., Yu, W.H., Peterhoff, C., Cataldo, A. and Cuervo, A.M. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64 (2005) 113-122.10.1093/jnen/64.2.113Search in Google Scholar PubMed

10. Rami, A., Langhagen, A. and Steiger, S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis. 29 (2008) 132-141.Search in Google Scholar

11. Wang, D. and Hiesinger, P.R. Autophagy, neuron-specific degradation and neurodegeneration. Autophagy 8 (2012) 711-713.Search in Google Scholar

12. Xu, Y., Xia, X. and Pan, H. Active autophagy in the tumor microenvironment: A novel mechanism for cancer metastasis. Oncol. Lett. 5 (2013) 411-416.Search in Google Scholar

13. Zhang, Y. and Ren, J. Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation 129 (2014) 1088-1091.Search in Google Scholar

14. Shintani, T. and Klionsky, D.J. Autophagy in health and disease: a doubleedged sword. Science 306 (2004) 990-995.Search in Google Scholar

15. Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B. and Wyss-Coray, T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118 (2008) 2190-2199.Search in Google Scholar

16. Benbrook, D.M. and Long, A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp. Oncol. 34 (2012) 286-297. Search in Google Scholar

17. Scheper, W., Nijholt, D.A. and Hoozemans, J.J. The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7 (2011) 910-911.Search in Google Scholar

18. Nijholt, D.A., de Graaf, T.R., van Haastert, E.S., Oliveira, A.O., Berkers, C.R., Zwart, R., Ovaa, H., Baas, F., Hoozemans, J.J. and Scheper, W. Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer's disease. Cell Death Differ. 18 (2011) 1071-1081.10.1038/cdd.2010.176Search in Google Scholar PubMed PubMed Central

19. Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R.J., Kominami, E. and Momoi, T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14 (2007) 230-239.10.1038/sj.cdd.4401984Search in Google Scholar PubMed

20. Teng, X., Song, J., Zhang, G., Cai, Y., Yuan, F., Du, J., Tang, C. and Qi, Y. Inhibition of endoplasmic reticulum stress by intermedin(1-53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. J. Mol. Med. (Berl) 89 (2011) 1195-1205.Search in Google Scholar

21. Hoyer-Hansen, M. and Jaattela, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14 (2007) 1576-1582.Search in Google Scholar

22. Boyce, M. and Yuan, J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 13 (2006) 363-373.10.1038/sj.cdd.4401817Search in Google Scholar PubMed

23. Ye, X.H., Wu, Y., Guo, P.P., Wang, J., Yuan, S.Y., Shang, Y. and Yao, S.L. Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res. 1323 (2010) 174-183.Search in Google Scholar

24. Wu, Y., Ye, X. H., Guo, P.P., Xu, S.P., Wang, J., Yuan, S.Y., Yao, S.L. and Shang, Y. Neuroprotective effect of lipoxin A4 methyl ester in a rat model of permanent focal cerebral ischemia. J. Mol. Neurosci. 42 (2010) 226-234.Search in Google Scholar

25. Wu, L., Miao, S., Zou, L.B., Wu, P., Hao, H., Tang, K., Zeng, P., Xiong, J., Li, H.H., Wu, Q., Cai, L. and Ye, D.Y. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J. Mol. Neurosci. 48 (2012) 185-200.Search in Google Scholar

26. Jin, W., Jia, Y., Huang, L., Wang, T., Wang, H., Dong, Y., Zhang, H., Fan, M. and Lv, P. Lipoxin A4 methyl ester ameliorates cognitive deficits induced by chronic cerebral hypoperfusion through activating ERK/Nrf2 signaling pathway in rats. Pharmacol. Biochem. Behav. 124 (2014) 145-152.Search in Google Scholar

27. Guo, F., Zhang, H., Chen, C., Hu, S., Wang, Y., Qiao, J., Ren, Y., Zhang, K. and Du, G. Autophagy favors Brucella melitensis survival in infected macrophages. Cell. Mol. Biol. Lett. 17 (2012) 249-257.Search in Google Scholar

28. Wei, K., Wang, P. and Miao, C.Y. A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci. Ther. 18 (2012) 879-886.Search in Google Scholar

29. Kim, J., Kundu, M., Viollet, B. and Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13 (2011) 132-141. Search in Google Scholar

30. Jung, C.H., Jun, C.B., Ro, S.H., Kim, Y.M., Otto, N.M., Cao, J., Kundu, M. and Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20 (2009) 1992-2003.Search in Google Scholar

31. Hosoi, T., Ogawa, K. and Ozawa, K. Homocysteine induces X-box-binding protein 1 splicing in the mice brain. Neurochem. Int. 56 (2010) 216-220.Search in Google Scholar

32. Laplante, M. and Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149 (2012) 274-293.Search in Google Scholar

33. Wullschleger, S., Loewith, R. and Hall, M. N. TOR signaling in growth and metabolism. Cell 124 (2006) 471-484.Search in Google Scholar

34. Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J. and Sabatini, D.M. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11 (2006) 859-871.Search in Google Scholar

35. Jung, C.H., Ro, S.H., Cao, J., Otto, N.M. and Kim, D.H. mTOR regulation of autophagy. FEBS Lett. 584 (2010) 1287-1295.Search in Google Scholar

36. Copp, J., Manning, G. and Hunter, T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69 (2009) 1821-1827.Search in Google Scholar

37. Carayol, N., Vakana, E., Sassano, A., Kaur, S., Goussetis, D.J., Glaser, H., Druker, B.J., Donato, N.J., Altman, J.K., Barr, S. and Platanias, L.C. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc. Natl. Acad. Sci. USA 107 (2010) 12469-12474.Search in Google Scholar

38. White, E. and DiPaola, R.S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15 (2009) 5308-5316.Search in Google Scholar

39. Apel, A., Zentgraf, H., Buchler, M.W. and Herr, I. Autophagy-A doubleedged sword in oncology. Int. J. Cancer 125 (2009) 991-995.Search in Google Scholar

40. Clarke, P.G. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. (Berl) 181 (1990) 195-213.Search in Google Scholar

41. Kroemer, G., El-Deiry, W.S., Golstein, P., Peter, M.E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M.V., Malorni, W., Knight, R.A., Piacentini, M., Nagata, S. and Melino, G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12 (2005) 1463-1467.10.1038/sj.cdd.4401724Search in Google Scholar PubMed

42. Shen, H.M. and Codogno, P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7 (2011) 457-465.Search in Google Scholar

43. Boya, P., Gonzalez-Polo, R.A., Casares, N., Perfettini, J.L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P. and Kroemer, G. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25 (2005) 1025-1040.Search in Google Scholar

44. Rabinowitz, J.D. and White, E. Autophagy and metabolism. Science 330 (2010) 1344-1348. Search in Google Scholar

45. De Jong, G.I., Farkas, E., Stienstra, C.M., Plass, J.R., Keijser, J.N., de la Torre, J.C. and Luiten, P.G. Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment. Neuroscience 91 (1999) 203-210.Search in Google Scholar

46. Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M. and Chan, P.H. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J. Cereb. Blood Flow Metab. 23 (2003) 949-961.Search in Google Scholar

47. Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., Morihara, T., Yoneda, T., Gomi, F., Mori, Y., Nakano, Y., Takeda, J., Tsuda, T., Itoyama, Y., Murayama, O., Takashima, A., St George-Hyslop, P., Takeda, M. and Tohyama, M. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol. 1 (1999) 479-485.Search in Google Scholar

48. Hetz, C., Thielen, P., Matus, S., Nassif, M., Court, F., Kiffin, R., Martinez, G., Cuervo, A.M., Brown, R.H. and Glimcher, L.H. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23 (2009) 2294-2306. Search in Google Scholar

Received: 2015-2-11
Accepted: 2015-5-27
Published Online: 2015-7-24
Published in Print: 2015-9-1

© University of Wrocław, Poland

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0027/html
Scroll to top button