Abstract
Saliva, a non-invasive biofluid with a variety of biomolecules, has been increasingly recognized as a reliable specimen in the diagnostics of viral infections. Compared to the standard specimens represented by blood and nasopharyngeal swab, saliva is advantageous in non-invasive, simple collection, convenient storage and compatibility with self-testing and large-scale screening. Saliva is an all-round specimen for viral detection as the shedding of viral nucleic acid fragments, antigens and the secretion of virus-specific antibodies are present in saliva. Accordingly, saliva has been widely used to detect a variety of viruses, including saliva-borne, air-borne and blood-borne transmitted viruses. However, challenges also arise as diverse methods during collection, storage and processing of the saliva could lead to discordant results among different studies. It is now aware that the methodology of saliva sampling is critical to the detection of viral biomarkers in the accuracy, repeatability and consistence with the data retrieved from the standard specimens. Therefore, establishing a standardized procedure for saliva sampling is crucial. Here we focus on a dozen factors that may affect the results of salivary diagnostic of viral infections and suggest a set of standardized procedures for saliva sampling, aiming to minimize result variation and benefit the application of saliva in salivary diagnostics of viral infections.
Funding source: the National Key Research and Development Program of China
Award Identifier / Grant number: 2023YFF0611002
Funding source: the Natural Science Foundation of Zhejiang Province
Award Identifier / Grant number: LGF22H100005 and LTGY24H100005
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by grants from the National Key Research and Development Program of China (2023YFF0611002) and the Natural Science Foundation of Zhejiang Province (LGF22H100005 and LTGY24H100005).
-
Data availability: Not applicable.
References
1. Okuyama, K, Yanamoto, S. Saliva in balancing oral and systemic health, oral cancer, and beyond: a narrative review. Cancers (Basel) 2024;16. https://doi.org/10.3390/cancers16244276.Search in Google Scholar PubMed PubMed Central
2. Roblegg, E, Coughran, A, Sirjani, D. Saliva: an all-rounder of our body. Eur J Pharm Biopharm 2019;142:133–41. https://doi.org/10.1016/j.ejpb.2019.06.016.Search in Google Scholar PubMed
3. Nonaka, T, Wong, DTW. Saliva diagnostics. Annu Rev Anal Chem 2022;15:107–21. https://doi.org/10.1146/annurev-anchem-061020-123959.Search in Google Scholar PubMed PubMed Central
4. Li, Y, Ou, Y, Fan, K, Liu, G. Salivary diagnostics: opportunities and challenges. Theranostics 2024;14:6969–90. https://doi.org/10.7150/thno.100600.Search in Google Scholar PubMed PubMed Central
5. Miller, CS, Foley, JD, Bailey, AL, Campell, CL, Humphries, RL, Christodoulides, N, et al.. Current developments in salivary diagnostics. Biomarkers Med 2010;4:171–89. https://doi.org/10.2217/bmm.09.68.Search in Google Scholar PubMed PubMed Central
6. Zhou, Y, Liu, Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023;548:117503. https://doi.org/10.1016/j.cca.2023.117503.Search in Google Scholar PubMed
7. Javaid, MA, Ahmed, AS, Durand, R, Tran, SD. Saliva as a diagnostic tool for oral and systemic diseases. J Oral Biol Craniofac Res 2016;6:66–75. https://doi.org/10.1016/j.jobcr.2015.08.006.Search in Google Scholar PubMed PubMed Central
8. Huang, Z, Yang, X, Huang, Y, Tang, Z, Chen, Y, Liu, H, et al.. Saliva – a new opportunity for fluid biopsy. Clin Chem Lab Med 2023;61:4–32. https://doi.org/10.1515/cclm-2022-0793.Search in Google Scholar PubMed
9. Taylor, JJ, Preshaw, PM. Gingival crevicular fluid and saliva. Periodontol 20002016;70:7–10. https://doi.org/10.1111/prd.12118.Search in Google Scholar PubMed
10. Ebersole, JL, Hasturk, H, Huber, M, Gellibolian, R, Markaryan, A, Zhang, XD, et al.. Realizing the clinical utility of saliva for monitoring oral diseases. Periodontol 20002024;95:203–19. https://doi.org/10.1111/prd.12581.Search in Google Scholar PubMed
11. Wang, S, Liu, Y, Qiu, Y, Dou, Q, Han, Y, Huang, M, et al.. Saliva-based point-of-care testing techniques for COVID-19 detection. Virol Sin 2022;37:472–6. https://doi.org/10.1016/j.virs.2022.04.004.Search in Google Scholar PubMed PubMed Central
12. Khan, RS, Khurshid, Z, Yahya Ibrahim Asiri, F. Advancing point-of-care (PoC) testing using human saliva as liquid biopsy. Diagnostics 2017;7. https://doi.org/10.3390/diagnostics7030039.Search in Google Scholar PubMed PubMed Central
13. Thiele, M, Villesen, IF, Niu, L, Johansen, S, Sulek, K, Nishijima, S, et al.. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024;81:345–59. https://doi.org/10.1016/j.jhep.2024.03.035.Search in Google Scholar PubMed
14. Ai, J, Smith, B, Wong, DT. Saliva ontology: an ontology-based framework for a salivaomics knowledge base. BMC Bioinf 2010;11:302. https://doi.org/10.1186/1471-2105-11-302.Search in Google Scholar PubMed PubMed Central
15. Nonaka, T, Wong, DTW. Saliva diagnostics: salivaomics, saliva exosomics, and saliva liquid biopsy. J Am Dent Assoc 2023;154:696–704. https://doi.org/10.1016/j.adaj.2023.05.006.Search in Google Scholar PubMed PubMed Central
16. Jiao, LL, Dong, HL, Liu, MM, Wu, PL, Cao, Y, Zhang, Y, et al.. The potential roles of salivary biomarkers in neurodegenerative diseases. Neurobiol Dis 2024;193:106442. https://doi.org/10.1016/j.nbd.2024.106442.Search in Google Scholar PubMed
17. Corstjens, PL, Abrams, WR, Malamud, D. Saliva and viral infections. Periodontol 20002016;70:93–110. https://doi.org/10.1111/prd.12112.Search in Google Scholar PubMed PubMed Central
18. Lam, B, Amer, L, Thompson, E, Clark, AE, Garretson, AF, Carlin, AF, et al.. Matrix-insensitive sensor arrays via peptide-coated nanoparticles: rapid saliva screening for pathogens in oral and respiratory diseases. ACS Appl Mater Interfaces 2024;16:67362–72. https://doi.org/10.1021/acsami.4c15662.Search in Google Scholar PubMed
19. Laxton, CS, Peno, C, Hahn, AM, Allicock, OM, Perniciaro, S, Wyllie, AL. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. Lancet Microbe 2023;4:e837–50. https://doi.org/10.1016/s2666-5247-23-00135-0.Search in Google Scholar
20. Lima, DP, Diniz, DG, Moimaz, SA, Sumida, DH, Okamoto, AC. Saliva: reflection of the body. Int J Infect Dis 2010;14:e184–8. https://doi.org/10.1016/j.ijid.2009.04.022.Search in Google Scholar PubMed
21. Diak, DM, Crucian, BE, Nelman-Gonzalez, M, Mehta, SK. Saliva diagnostics in spaceflight virology studies – A review. Viruses 2024;16. https://doi.org/10.3390/v16121909.Search in Google Scholar PubMed PubMed Central
22. Oliveira Neto, NF, Caixeta, RAV, Zerbinati, RM, Zarpellon, AC, Caetano, MW, Pallos, D, et al.. The emergence of saliva as a diagnostic and prognostic tool for viral infections. Viruses 2024;16. https://doi.org/10.3390/v16111759.Search in Google Scholar PubMed PubMed Central
23. Corstjens, PL, Abrams, WR, Malamud, D. Detecting viruses by using salivary diagnostics. J Am Dent Assoc 2012;143:12s–8s. https://doi.org/10.14219/jada.archive.2012.0338.Search in Google Scholar PubMed PubMed Central
24. To, KK, Tsang, OT, Yip, CC, Chan, KH, Wu, TC, Chan, JM, et al.. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020;71:841–3. https://doi.org/10.1093/cid/ciaa149.Search in Google Scholar PubMed PubMed Central
25. Sultana, N, Biswas, PP, Resma, TI, Fatema, N, Sharmin, R, Sweety, AA, et al.. Evaluating saliva for SARS-CoV-2 detection: a practical alternative. Diagn Microbiol Infect Dis 2025;113:116902. https://doi.org/10.1016/j.diagmicrobio.2025.116902.Search in Google Scholar PubMed
26. Amado Leon, LA, de Almeida, AJ, de Paula, VS, Tourinho, RS, Villela, DA, Gaspar, AM, et al.. Longitudinal study of hepatitis A infection by saliva sampling: the kinetics of HAV markers in saliva revealed the application of saliva tests for hepatitis A study. PLoS One 2015;10:e0145454. https://doi.org/10.1371/journal.pone.0145454.Search in Google Scholar PubMed PubMed Central
27. Arora, G, Sheikh, S, Pallagatti, S, Singh, B, Singh, VA, Singh, R. Saliva as a tool in the detection of hepatitis B surface antigen in patients. Comp Cont Educ Dent 2012;33:174–6. 178; quiz 180, 182.Search in Google Scholar
28. Albertos, S, Majo, FX, Esteban, R, Colom, J, Buti, M. A large-scale screening of hepatitis C among men who have sex with men in the community using saliva point-of-care testing. Front Public Health 2024;12:1478195. https://doi.org/10.3389/fpubh.2024.1478195.Search in Google Scholar PubMed PubMed Central
29. Poitevin, CG, Royer, CA, Bonatto, AC, Rodrigues, CO, Peiter, GC, Brandalize, APC, et al.. Non-invasive molecular dengue virus 1 diagnosis in saliva is possible. Diagn Microbiol Infect Dis 2025;113:116935. https://doi.org/10.1016/j.diagmicrobio.2025.116935.Search in Google Scholar PubMed
30. Coppens, J, Vanroye, F, Brosius, I, Liesenborghs, L, van Henten, S, Vanbaelen, T, et al.. Alternative sampling specimens for the molecular detection of mpox (formerly monkeypox) virus. J Clin Virol 2023;159:105372. https://doi.org/10.1016/j.jcv.2022.105372.Search in Google Scholar PubMed PubMed Central
31. Pando-Caciano, A, Mamaní-Cajachagua, PE, Ingunza-Tapia, AA, Sánchez-García, GJ, Caffo-Valentín, XL, Rizo-Patrón, E, et al.. Saliva samples as a potential tool for the diagnosis and monitoring of cytomegalovirus reactivation in children undergoing transplantation. Transplant Proc 2025;57:663–9. https://doi.org/10.1016/j.transproceed.2025.02.023.Search in Google Scholar PubMed
32. Aninagyei, E, Boatey, CA, Larbi, G, Tsidi, WB, Amemo, RE, Nyarkotey, ET, et al.. Detection of HIV-1 antibodies in saliva of persons living with HIV using blood-based first response HIV 1-2.O card test. J Clin Lab Anal 2025;39:e70069. https://doi.org/10.1002/jcla.70069.Search in Google Scholar PubMed PubMed Central
33. Woo, T, Rosadas, C, Ijaz, S, Dicks, S, Tosswill, JHC, Tedder, RS, et al.. Noninvasive detection of antibodies to human T-cell lymphotropic virus types 1 and 2 by use of oral fluid. J Clin Microbiol 2019;57. https://doi.org/10.1128/jcm.01179-19.Search in Google Scholar
34. Liu, Y, Kumblathan, T, Tao, J, Xu, J, Feng, W, Xiao, H, et al.. Recent advances in RNA sample preparation techniques for the detection of SARS-CoV-2 in saliva and gargle. Trends Anal Chem 2023;165:117107. https://doi.org/10.1016/j.trac.2023.117107.Search in Google Scholar PubMed PubMed Central
35. Michailidou, E, Poulopoulos, A, Tzimagiorgis, G. Salivary diagnostics of the novel coronavirus SARS-CoV-2 (COVID-19). Oral Dis 2022;28(1 Suppl):867–77. https://doi.org/10.1111/odi.13729.Search in Google Scholar PubMed PubMed Central
36. Baek, HJ, Kim, KS, Kwoen, M, Park, ES, Lee, HJ, Park, KU. Saliva assay: a call for methodological standardization. J Periodontal Implant Sci 2025;55:2–17. https://doi.org/10.5051/jpis.2304180209.Search in Google Scholar PubMed PubMed Central
37. Amado, F, Calheiros-Lobo, MJ, Ferreira, R, Vitorino, R. Sample treatment for saliva proteomics. Adv Exp Med Biol 2019;1073:23–56. https://doi.org/10.1007/978-3-030-12298-0-2.Search in Google Scholar
38. Costa, MM, Benoit, N, Tissot-Dupont, H, Million, M, Pradines, B, Granjeaud, S, et al.. Mouth washing impaired SARS-CoV-2 detection in saliva. Diagnostics 2021;11. https://doi.org/10.3390/diagnostics11081509.Search in Google Scholar PubMed PubMed Central
39. Stekler, JD, O’Neal, JD, Lane, A, Swanson, F, Maenza, J, Stevens, CE, et al.. Relative accuracy of serum, whole blood, and oral fluid HIV tests among Seattle men who have sex with men. J Clin Virol 2013;58(1 Suppl):e119–22.10.1016/j.jcv.2013.09.018Search in Google Scholar PubMed PubMed Central
40. Galli, RA, Maraj, D, McBain, K, Lo Hog Tian, JM, McFarland, A, Tharao, W, et al.. A prospective multi-site study to evaluate the performance and usability of an oral fluid-based HIV self-test in Canada. BMC Public Health 2025;25:125. https://doi.org/10.1186/s12889-024-21228-8.Search in Google Scholar PubMed PubMed Central
41. Ter-Ovanesyan, D, Gilboa, T, Lazarovits, R, Rosenthal, A, Yu, X, Li, JZ, et al.. Ultrasensitive measurement of both SARS-CoV-2 RNA and antibodies from saliva. Anal Chem 2021;93:5365–70. https://doi.org/10.1021/acs.analchem.1c00515.Search in Google Scholar PubMed
42. Mohammadi, A, Chiang, S, Li, F, Wei, F, Lau, CS, Aziz, M, et al.. Direct detection of 4-dimensions of SARS-CoV-2: infection (vRNA), infectivity (antigen), binding antibody, and functional neutralizing antibody in saliva. Sci Rep 2024;14:30792. https://doi.org/10.1038/s41598-024-81019-4.Search in Google Scholar PubMed PubMed Central
43. Zhou, C, Cai, Z, Jin, B, Lin, H, Xu, L, Jin, Z. Saliva-based detection of SARS-CoV-2: a bibliometric analysis of global research. Mol Cell Biochem 2024;479:761–77. https://doi.org/10.1007/s11010-023-04760-w.Search in Google Scholar PubMed PubMed Central
44. Gantt, S, Goldfarb, DM, Park, A, Rawlinson, W, Boppana, SB, Lazzarotto, T, et al.. Performance of the alethia CMV assay for detection of cytomegalovirus by use of neonatal saliva swabs. J Clin Microbiol 2020;58. https://doi.org/10.1128/jcm.01951-19.Search in Google Scholar
45. Nefzi, F, Ben Salem, NA, Khelif, A, Feki, S, Aouni, M, Gautheret-Dejean, A. Quantitative analysis of human herpesvirus-6 and human cytomegalovirus in blood and saliva from patients with acute leukemia. J Med Virol 2015;87:451–60. https://doi.org/10.1002/jmv.24059.Search in Google Scholar PubMed
46. Lazzarotto, T, Dal Monte, P, Boccuni, MC, Ripalti, A, Landini, MP. Lack of correlation between virus detection and serologic tests for diagnosis of active cytomegalovirus infection in patients with AIDS. J Clin Microbiol 1992;30:1027–9. https://doi.org/10.1128/jcm.30.4.1027-1029.1992.Search in Google Scholar PubMed PubMed Central
47. Farisyi, MA, Sufiawati, I. Detection of epstein-Barr virus DNA in saliva of HIV-1-infected individuals with oral hairy leukoplakia. Oral Dis 2020;26(1 Suppl):158–60. https://doi.org/10.1111/odi.13400.Search in Google Scholar PubMed
48. Fafi-Kremer, S, Morand, P, Brion, JP, Pavese, P, Baccard, M, Germi, R, et al.. Long-term shedding of infectious Epstein-Barr virus after infectious mononucleosis. J Infect Dis 2005;191:985–9. https://doi.org/10.1086/428097.Search in Google Scholar PubMed
49. Sugimoto, S, Nagakubo, S, Ito, T, Tsunoda, Y, Imamura, S, Tamura, T, et al.. A case of acute hepatitis B related to previous gynecological surgery in Japan. J Infect Chemother 2013;19:524–9. https://doi.org/10.1007/s10156-012-0477-5.Search in Google Scholar PubMed
50. Harnett, GB, Farr, TJ, Pietroboni, GR, Bucens, MR. Frequent shedding of human herpesvirus 6 in saliva. J Med Virol 1990;30:128–30. https://doi.org/10.1002/jmv.1890300209.Search in Google Scholar PubMed
51. Wang, Y, Springer, S, Mulvey, CL, Silliman, N, Schaefer, J, Sausen, M, et al.. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 2015;7:293ra104. https://doi.org/10.1126/scitranslmed.aaa8507.Search in Google Scholar PubMed PubMed Central
52. Hamzan, NI, Ab Rahman, N, Suraiya, S, Mohamad, I, George Kalarakkal, T, Mohamad, S. Real-time loop-mediated isothermal amplification assay for rapid detection of human papillomavirus 16 in oral squamous cell carcinoma. Arch Oral Biol 2021;124:105051. https://doi.org/10.1016/j.archoralbio.2021.105051.Search in Google Scholar PubMed
53. Hernaez, B, Muñoz-Gómez, A, Sanchiz, A, Orviz, E, Valls-Carbo, A, Sagastagoitia, I, et al.. Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. Lancet Microbe 2023;4:e21–8. https://doi.org/10.1016/S2666-5247-22-00291-9.Search in Google Scholar
54. Korhonen, EM, Huhtamo, E, Virtala, AM, Kantele, A, Vapalahti, O. Approach to non-invasive sampling in dengue diagnostics: exploring virus and NS1 antigen detection in saliva and urine of travelers with dengue. J Clin Virol 2014;61:353–8. https://doi.org/10.1016/j.jcv.2014.08.021.Search in Google Scholar PubMed
55. Formenty, P, Leroy, EM, Epelboin, A, Libama, F, Lenzi, M, Sudeck, H, et al.. Detection of Ebola virus in oral fluid specimens during outbreaks of Ebola virus hemorrhagic fever in the Republic of Congo. Clin Infect Dis 2006;42:1521–6. https://doi.org/10.1086/503836.Search in Google Scholar PubMed
56. Amado, LA, Villar, LM, de Paula, VS, Pinto, MA, Gaspar, AM. Exposure to multiple subgenotypes of hepatitis A virus during an outbreak using matched serum and saliva specimens. J Med Virol 2011;83:768–75. https://doi.org/10.1002/jmv.22045.Search in Google Scholar PubMed
57. Mendonça, A, Portilho, MM, da Silva, JC, Caetano, AR, Lewis-Ximenez, LL, Villar, LM. Optimization of a real time PCR methodology for HCV RNA quantification in saliva samples. J Virol Methods 2022;302:114470. https://doi.org/10.1016/j.jviromet.2022.114470.Search in Google Scholar PubMed
58. Balamane, M, Winters, MA, Dalai, SC, Freeman, AH, Traves, MW, Israelski, DM, et al.. Detection of HIV-1 in saliva: implications for case-identification, clinical monitoring and surveillance for drug resistance. Open Virol J 2010;4:88–93. https://doi.org/10.2174/1874357901004010088.Search in Google Scholar PubMed PubMed Central
59. Liu, C, Geva, E, Mauk, M, Qiu, X, Abrams, WR, Malamud, D, et al.. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 2011;136:2069–76. https://doi.org/10.1039/c1an00007a.Search in Google Scholar PubMed PubMed Central
60. Coppenhaver, DH, Sriyuktasuth-Woo, P, Baron, S, Barr, CE, Qureshi, MN. Correlation of nonspecific antiviral activity with the ability to isolate infectious HIV-1 from saliva. N Engl J Med 1994;330:1314–5. https://doi.org/10.1056/nejm199405053301815.Search in Google Scholar PubMed
61. Deutsch, F, Sais, D, Keatinge, N, Hill, M, Tran, NH, Elliott, M, et al.. Biplex quantitative PCR to detect transcriptionally active human papillomavirus 16 from patient saliva. BMC Cancer 2024;24:442. https://doi.org/10.1186/s12885-024-12125-9.Search in Google Scholar PubMed PubMed Central
62. Soto-Ramirez, LE, Garcia-Vallejo, F, Renjifo, B, Vergara, A, Borrero, I, Marlink, R, et al.. Human T-lymphotropic virus type I (HTLV-I)-specific antibodies and cell-free RNA in crevicular fluid-rich saliva from patients with tropical spastic paraparesis/HTLV-I-associated myelopathy. Viral Immunol 1995;8:141–50. https://doi.org/10.1089/vim.1995.8.141.Search in Google Scholar PubMed
63. Bhardwaj, J, Sharma, A, Jang, J. Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. Biosens Bioelectron 2019;126:36–43. https://doi.org/10.1016/j.bios.2018.10.008.Search in Google Scholar PubMed
64. Warneford-Thomson, R, Shah, PP, Lundgren, P, Lerner, J, Morgan, J, Davila, A, et al.. A LAMP sequencing approach for high-throughput co-detection of SARS-CoV-2 and influenza virus in human saliva. eLife 2022;11. https://doi.org/10.7554/elife.69949.Search in Google Scholar
65. Vinagre, C, Martínez, MJ, Avendaño, LF, Landaeta, M, Pinto, ME. Virology of infantile chronic recurrent parotitis in Santiago de Chile. J Med Virol 2003;70:459–62. https://doi.org/10.1002/jmv.10417.Search in Google Scholar PubMed PubMed Central
66. Azzi, L, Carcano, G, Gianfagna, F, Grossi, P, Gasperina, DD, Genoni, A, et al.. Saliva is a reliable tool to detect SARS-CoV-2. J Infect 2020;81:e45–0. https://doi.org/10.1016/j.jinf.2020.04.005.Search in Google Scholar PubMed PubMed Central
67. Nagura-Ikeda, M, Imai, K, Tabata, S, Miyoshi, K, Murahara, N, Mizuno, T, et al.. Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. J Clin Microbiol 2020;58. https://doi.org/10.1128/jcm.01438-20.Search in Google Scholar
68. Jeong, HW, Kim, SM, Kim, HS, Kim, YI, Kim, JH, Cho, JY, et al.. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clin Microbiol Infect 2020;26:1520–4. https://doi.org/10.1016/j.cmi.2020.07.020.Search in Google Scholar PubMed PubMed Central
69. Nagaraj, T, Vasanth, JP, Desai, A, Kamat, A, Madhusudana, SN, Ravi, V. Ante mortem diagnosis of human rabies using saliva samples: comparison of real time and conventional RT-PCR techniques. J Clin Virol 2006;36:17–23. https://doi.org/10.1016/j.jcv.2006.01.009.Search in Google Scholar PubMed
70. Simani, S, Fayaz, A, Rahimi, P, Eslami, N, Howeizi, N, Biglari, P. Six fatal cases of classical Rabies virus without biting incidents, Iran 1990–2010. J Clin Virol 2012;54:251–4. https://doi.org/10.1016/j.jcv.2012.03.009.Search in Google Scholar PubMed
71. Musso, D, Roche, C, Nhan, TX, Robin, E, Teissier, A, Cao-Lormeau, VM. Detection of Zika virus in saliva. J Clin Virol 2015;68:53–5. https://doi.org/10.1016/j.jcv.2015.04.021.Search in Google Scholar PubMed
72. Sabalza, M, Yasmin, R, Barber, CA, Castro, T, Malamud, D, Kim, BJ, et al.. Detection of Zika virus using reverse-transcription LAMP coupled with reverse dot blot analysis in saliva. PLoS One 2018;13:e0192398. https://doi.org/10.1371/journal.pone.0192398.Search in Google Scholar PubMed PubMed Central
73. Bonaldo, MC, Ribeiro, IP, Lima, NS, Dos Santos, AA, Menezes, LS, da Cruz, SO, et al.. Isolation of infective Zika virus from urine and saliva of patients in Brazil. PLoS Neglected Trop Dis 2016;10:e0004816. https://doi.org/10.1371/journal.pntd.0004816.Search in Google Scholar PubMed PubMed Central
74. Wang, Z, Bennett, RS, Roehler, M, Guillon, G, Fischl, MJ, Donadi, MC, et al.. Development and clinical evaluation of a rapid point of care test for Ebola virus infection in humans. Viruses 2023;15. https://doi.org/10.3390/v15020336.Search in Google Scholar PubMed PubMed Central
75. Pandori, MW, Hackett, JJr., Louie, B, Vallari, A, Dowling, T, Liska, S, et al.. Assessment of the ability of a fourth-generation immunoassay for human immunodeficiency virus (HIV) antibody and p24 antigen to detect both acute and recent HIV infections in a high-risk setting. J Clin Microbiol 2009;47:2639–42. https://doi.org/10.1128/jcm.00119-09.Search in Google Scholar
76. de Lima, LF, Barbosa, PP, Simeoni, CL, de Paula, RFO, Proenca-Modena, JL, de Araujo, WR. Electrochemical paper-based nanobiosensor for rapid and sensitive detection of monkeypox virus. ACS Appl Mater Interfaces 2023;15:58079–91. https://doi.org/10.1021/acsami.3c10730.Search in Google Scholar PubMed
77. Madhusudana, SN, Paul, JP, Abhilash, VK, Suja, MS. Rapid diagnosis of rabies in humans and animals by a dot blot enzyme immunoassay. Int J Infect Dis 2004;8:339–45. https://doi.org/10.1016/s1201-9712-04-00101-8.Search in Google Scholar
78. Yokota, I, Shane, PY, Okada, K, Unoki, Y, Yang, Y, Iwasaki, S, et al.. A novel strategy for SARS-CoV-2 mass screening with quantitative antigen testing of saliva: a diagnostic accuracy study. Lancet Microbe 2021;2:e397–404. https://doi.org/10.1016/s2666-5247-21-00092-6.Search in Google Scholar
79. Oh, HK, Kim, K, Park, J, Im, H, Maher, S, Kim, MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022;205:114094. https://doi.org/10.1016/j.bios.2022.114094.Search in Google Scholar PubMed PubMed Central
80. Wilms, IR, Best, AM, Adler, SP. Cytomegalovirus infections among African–Americans. BMC Infect Dis 2008;8:107. https://doi.org/10.1186/1471-2334-8-107.Search in Google Scholar PubMed PubMed Central
81. Cuzzubbo, AJ, Vaughn, DW, Nisalak, A, Suntayakorn, S, Aaskov, J, Devine, PL. Detection of specific antibodies in saliva during dengue infection. J Clin Microbiol 1998;36:3737–9. https://doi.org/10.1128/jcm.36.12.3737-3739.1998.Search in Google Scholar PubMed PubMed Central
82. Lambe, T, Rampling, T, Samuel, D, Bowyer, G, Ewer, KJ, Venkatraman, N, et al.. Detection of vaccine-induced antibodies to Ebola virus in oral fluid. Open Forum Infect Dis 2016;3:ofw031. https://doi.org/10.1093/ofid/ofw031.Search in Google Scholar PubMed PubMed Central
83. Vyse, AJ, Knowles, WA, Cohen, BJ, Brown, DW. Detection of IgG antibody to Epstein-Barr virus viral capsid antigen in saliva by antibody capture radioimmunoassay. J Virol Methods 1997;63:93–101. https://doi.org/10.1016/s0166-0934-96-02118-0.Search in Google Scholar
84. Wang, C, Chen, Y, Xu, T, Tian, X, Zheng, J, Liu, W, et al.. A novel method to diagnose the infection of enterovirus A71 in children by detecting IgA from saliva. J Med Virol 2020;92:1059–64. https://doi.org/10.1002/jmv.25672.Search in Google Scholar PubMed
85. Tourinho, RS, Amado, LA, Villar, LM, Sampaio, DV, Moraes, AC, Rodrigues do, ÓKM, et al.. Importance of the cutoff ratio for detecting antibodies against hepatitis A virus in oral fluids by enzyme immunoassay. J Virol Methods 2011;173:169–74. https://doi.org/10.1016/j.jviromet.2011.01.014.Search in Google Scholar PubMed
86. Scalioni Lde, P, Cruz, HM, de Paula, VS, Miguel, JC, Marques, VA, Villela-Nogueira, CA, et al.. Performance of rapid hepatitis C virus antibody assays among high- and low-risk populations. J Clin Virol 2014;60:200–5. https://doi.org/10.1016/j.jcv.2014.04.001.Search in Google Scholar PubMed
87. Buchinsky, FJ, Carter, JJ, Wipf, GC, Hughes, JP, Koutsky, LA, Galloway, DA. Comparison of oral fluid and serum ELISAs in the determination of IgG response to natural human papillomavirus infection in university women. J Clin Virol 2006;35:450–3. https://doi.org/10.1016/j.jcv.2005.09.014.Search in Google Scholar PubMed
88. Tsunetsugu-Yokota, Y, Ito, S, Adachi, Y, Onodera, T, Kageyama, T, Takahashi, Y. Saliva as a useful tool for evaluating upper mucosal antibody response to influenza. PLoS One 2022;17:e0263419. https://doi.org/10.1371/journal.pone.0263419.Search in Google Scholar PubMed PubMed Central
89. Kang, B, Oh, J, Lee, C, Park, BK, Park, Y, Hong, K, et al.. Evaluation of a rapid immunodiagnostic test kit for rabies virus. J Virol Methods 2007;145:30–6. https://doi.org/10.1016/j.jviromet.2007.05.005.Search in Google Scholar PubMed
90. Yu, S, Zhang, P, Liao, M, Zhang, J, Luo, S, Zhai, J, et al.. Detection of SARS-CoV-2 specific antibodies in saliva samples. Front Immunol 2022;13:880154. https://doi.org/10.3389/fimmu.2022.880154.Search in Google Scholar PubMed PubMed Central
91. Vilela, ACS, Costa, CA, Oliveira, SA, Souza, M, Fiaccadori, FS, Leles, CR, et al.. Validity and reliability of immunochromatographic IgM/IgG rapid tests for COVID-19 salivary diagnosis. Oral Dis 2022;28(2 Suppl):2465–73. https://doi.org/10.1111/odi.14059.Search in Google Scholar PubMed PubMed Central
92. Koval, CE. Home testing for HIV: hopefully, a step forward. Cleve Clin J Med 2012;79:713–6. https://doi.org/10.3949/ccjm.79a.12128.Search in Google Scholar PubMed
93. Pittman, TW, Decsi, DB, Punyadeera, C, Henry, CS. Saliva-based microfluidic point-of-care diagnostic. Theranostics 2023;13:1091–108. https://doi.org/10.7150/thno.78872.Search in Google Scholar PubMed PubMed Central
94. Wyllie, AL, Choate, B, Burke, L, Ali, Y. Scalable solutions for global health: the SalivaDirect model. Front Cell Infect Microbiol 2024;14:1446514. https://doi.org/10.3389/fcimb.2024.1446514.Search in Google Scholar PubMed PubMed Central
95. Wityk, P, Terebieniec, A, Nowak, R, Łubiński, J, Mroczyńska-Szeląg, M, Wityk, T, et al.. Reusable biosensor for easy RNA detection from unfiltered saliva. Sensors (Basel) 2025;25. https://doi.org/10.3390/s25020360.Search in Google Scholar PubMed PubMed Central
96. Paulose, AK, Huang, CC, Chen, PH, Tripathi, A, Chen, PH, Huang, YS, et al.. A rapid detection of COVID-19 viral RNA in human saliva using electrical double layer-gated field-effect transistor-based biosensors. Adv Mater Technol 2022;7:2100842. https://doi.org/10.1002/admt.202100842.Search in Google Scholar PubMed PubMed Central
97. van der Eijk, AA, Niesters, HG, Götz, HM, Janssen, HL, Schalm, SW, Osterhaus, AD, et al.. Paired measurements of quantitative hepatitis B virus DNA in saliva and serum of chronic hepatitis B patients: implications for saliva as infectious agent. J Clin Virol 2004;29:92–4. https://doi.org/10.1016/s1386-6532-03-00092-1.Search in Google Scholar
98. Barkai, G, Ari-Even Roth, D, Barzilai, A, Tepperberg-Oikawa, M, Mendelson, E, Hildesheimer, M, et al.. Universal neonatal cytomegalovirus screening using saliva – report of clinical experience. J Clin Virol 2014;60:361–6. https://doi.org/10.1016/j.jcv.2014.04.024.Search in Google Scholar PubMed
99. To, KKW, Yip, CCY, Lai, CYW, Wong, CKH, Ho, DTY, Pang, PKP, et al.. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study. Clin Microbiol Infect 2019;25:372–8. https://doi.org/10.1016/j.cmi.2018.06.009.Search in Google Scholar PubMed
100. Manten, K, Katzenschlager, S, Brümmer, LE, Schmitz, S, Gaeddert, M, Erdmann, C, et al.. Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests: a systematic review and meta-analysis. Virol J 2024;21:99. https://doi.org/10.1186/s12985-024-02371-5.Search in Google Scholar PubMed PubMed Central
101. Zhang, Z, Pandey, R, Li, J, Gu, J, White, D, Stacey, HD, et al.. High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in unprocessed saliva. Angew Chem Int Ed Engl 2021;60:24266–74. https://doi.org/10.1002/anie.202110819.Search in Google Scholar PubMed PubMed Central
102. Siu, RHP, Jesky, RG, Fan, YJ, Au-Yeung, CCH, Kinghorn, AB, Chan, KH, et al.. Aptamer-mediated electrochemical detection of SARS-CoV-2 nucleocapsid protein in saliva. Biosensors (Basel) 2024;14. https://doi.org/10.3390/bios14100471.Search in Google Scholar PubMed PubMed Central
103. Jubair, M, Rahman, S, Begum, MN, Talha, M, Musarrat, R, Rahman, A, et al.. SARS-CoV-2 antigen detection by saliva; an alternative to nasopharyngeal specimen: a cross-sectional study. Health Sci Rep 2023;6:e1275. https://doi.org/10.1002/hsr2.1275.Search in Google Scholar PubMed PubMed Central
104. Tarim, EA, Karakuzu, B, Oksuz, C, Sarigil, O, Kizilkaya, M, Al-Ruweidi, M, et al.. Microfluidic-based virus detection methods for respiratory diseases. Emergent Mater 2021;4:143–68. https://doi.org/10.1007/s42247-021-00169-7.Search in Google Scholar PubMed PubMed Central
105. Guerra, ENS, de Castro, VT, Amorim Dos Santos, J, Acevedo, AC, Chardin, H. Saliva is suitable for SARS-CoV-2 antibodies detection after vaccination: a rapid systematic review. Front Immunol 2022;13:1006040. https://doi.org/10.3389/fimmu.2022.1006040.Search in Google Scholar PubMed PubMed Central
106. Holmström, P, Syrjänen, S, Laine, P, Valle, SL, Suni, J. HIV antibodies in whole saliva detected by ELISA and Western blot assays. J Med Virol 1990;30:245–8. https://doi.org/10.1002/jmv.1890300403.Search in Google Scholar PubMed
107. Tan, SH, Allicock, O, Armstrong-Hough, M, Wyllie, AL. Saliva as a gold-standard sample for SARS-CoV-2 detection. Lancet Respir Med 2021;9:562–4. https://doi.org/10.1016/s2213-2600-21-00178-8.Search in Google Scholar
108. To, KK, Tsang, OT, Leung, WS, Tam, AR, Wu, TC, Lung, DC, et al.. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20:565–74. https://doi.org/10.1016/s1473-3099-20-30196-1.Search in Google Scholar
109. Johnson, AJ, Zhou, S, Hoops, SL, Hillmann, B, Schomaker, M, Kincaid, R, et al.. Saliva testing is accurate for early-stage and presymptomatic COVID-19. Microbiol Spectr 2021;9:e0008621. https://doi.org/10.1128/spectrum.00086-21.Search in Google Scholar
110. Chopoorian, A, Banada, P, Reiss, R, Elson, D, Desind, S, Park, C, et al.. Persistence of SARS-CoV-2 in saliva: implications for late-stage diagnosis and infectious duration. PLoS One 2023;18:e0282708. https://doi.org/10.1371/journal.pone.0282708.Search in Google Scholar PubMed PubMed Central
111. Rossen, L, Nørskov, P, Holmstrøm, K, Rasmussen, OF. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 1992;17:37–45. https://doi.org/10.1016/0168-1605-92-90017-w.Search in Google Scholar
112. Uribe-Alvarez, C, Lam, Q, Baldwin, DA, Chernoff, J. Low saliva pH can yield false positives results in simple RT-LAMP-based SARS-CoV-2 diagnostic tests. PLoS One 2021;16:e0250202. https://doi.org/10.1371/journal.pone.0250202.Search in Google Scholar PubMed PubMed Central
113. Hernandez, MM, Riollano-Cruz, M, Boyle, MC, Banu, R, Shrestha, P, Gray, B, et al.. Food for thought: eating before saliva collection and interference with SARS-CoV-2 detection. J Med Virol 2022;94:2471–8. https://doi.org/10.1002/jmv.27660.Search in Google Scholar PubMed PubMed Central
114. Lippi, G, Nocini, R, Henry, BM, Plebani, M. Virucidal effects of mouthwashes or mouth rinses: a world of caution for molecular detection of SARS-CoV-2 in saliva. Diagnosis (Berl) 2022;9:285–7. https://doi.org/10.1515/dx-2022-0004.Search in Google Scholar PubMed
115. Brookes, ZLS, Belfield, LA, Ashworth, A, Casas-Agustench, P, Raja, M, Pollard, AJ, et al.. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent 2021;113:103768. https://doi.org/10.1016/j.jdent.2021.103768.Search in Google Scholar PubMed
116. Exterkate, RA, Zaura, E, Brandt, BW, Buijs, MJ, Koopman, JE, Crielaard, W, et al.. The effect of propidium monoazide treatment on the measured bacterial composition of clinical samples after the use of a mouthwash. Clin Oral Invest 2015;19:813–22. https://doi.org/10.1007/s00784-014-1297-z.Search in Google Scholar PubMed
117. Bartsch, S, Kohnert, E, Kreutz, C, Woelber, JP, Anderson, A, Burkhardt, AS, et al.. Chlorhexidine digluconate mouthwash alters the oral microbial composition and affects the prevalence of antimicrobial resistance genes. Front Microbiol 2024;15:1429692. https://doi.org/10.3389/fmicb.2024.1429692.Search in Google Scholar PubMed PubMed Central
118. Chojnowska, S, Baran, T, Wilińska, I, Sienicka, P, Cabaj-Wiater, I, Knaś, M. Human saliva as a diagnostic material. Adv Med Sci 2018;63:185–91. https://doi.org/10.1016/j.advms.2017.11.002.Search in Google Scholar PubMed
119. Cañete, MG, Valenzuela, IM, Garcés, PC, Massó, IC, González, MJ, Providell, SG. Saliva sample for the massive screening of SARS-CoV-2 infection: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021;131:540–8. https://doi.org/10.1016/j.oooo.2021.01.028.Search in Google Scholar PubMed PubMed Central
120. Nowzari, H, Wilder-Smith, P. Effects of mouthwash on oral cytomegalovirus, Epstein-Barr virus, Herpes Simplex virus type-1. Adv Clin Med Res 2022;3. https://doi.org/10.52793/acmr.2022.3-4-44.Search in Google Scholar
121. Alemany, A, Perez-Zsolt, D, Raïch-Regué, D, Muñoz-Basagoiti, J, Ouchi, D, Laporte-Villar, C, et al.. Cetylpyridinium chloride mouthwash to reduce shedding of infectious SARS-CoV-2: a double-blind randomized clinical trial. J Dent Res 2022;101:1450–6. https://doi.org/10.1177/00220345221102310.Search in Google Scholar PubMed
122. Carrouel, F, Valette, M, Gadea, E, Esparcieux, A, Illes, G, Langlois, ME, et al.. Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: a multicentre, randomized, double-blind controlled trial. Clin Microbiol Infect 2021;27:1494–501. https://doi.org/10.1016/j.cmi.2021.05.028.Search in Google Scholar PubMed PubMed Central
123. Costa, DD, Brites, C, Vaz, SN, de Santana, DS, Dos Santos, JN, Cury, PR. Chlorhexidine mouthwash reduces the salivary viral load of SARS-CoV-2: a randomized clinical trial. Oral Dis 2022;28(2 Suppl):2500–8. https://doi.org/10.1111/odi.14086.Search in Google Scholar PubMed
124. Eduardo, FP, Corrêa, L, Heller, D, Daep, CA, Benitez, C, Malheiros, Z, et al.. Salivary SARS-CoV-2 load reduction with mouthwash use: a randomized pilot clinical trial. Heliyon 2021;7:e07346. https://doi.org/10.1016/j.heliyon.2021.e07346.Search in Google Scholar PubMed PubMed Central
125. Seymour, DW, Forshaw, G, Porteous, M, Mawer, D, Wiggins, F, Mitchell, A, et al.. Investigating the effectiveness of commercially available mouthwash on SARS-CoV-2 in vivo using viable virus titre as the primary outcome. A randomised controlled trial. Access Microbiol 2024;6. https://doi.org/10.1099/acmi.0.000722.v3.Search in Google Scholar PubMed PubMed Central
126. Rahman, GS, Alshetan, AAN, Alotaibi, SSO, Alaskar, BMI, Baseer, MA. Is chlorhexidine mouthwash effective in lowering COVID-19 viral load? A systematic review. Eur Rev Med Pharmacol Sci 2023;27:366–77. https://doi.org/10.26355/eurrev-202301-30890.Search in Google Scholar
127. Rosa, N, Marques, J, Esteves, E, Fernandes, M, Mendes, VM, Afonso, Â, et al.. Protein quality assessment on saliva samples for biobanking purposes. Biopreserv Biobanking 2016;14:289–97. https://doi.org/10.1089/bio.2015.0054.Search in Google Scholar PubMed
128. Costa, MM, Benoit, N, Saby, F, Pradines, B, Granjeaud, S, Almeras, L. Optimization and standardization of human saliva collection for MALDI-TOF MS. Diagnostics 2021;11. https://doi.org/10.3390/diagnostics11081304.Search in Google Scholar PubMed PubMed Central
129. Henson, BS, Wong, DT. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol Biol 2010;666:21–30. https://doi.org/10.1007/978-1-60761-820-1-2.Search in Google Scholar
130. Topkas, E, Keith, P, Dimeski, G, Cooper-White, J, Punyadeera, C. Evaluation of saliva collection devices for the analysis of proteins. Clin Chim Acta 2012;413:1066–70. https://doi.org/10.1016/j.cca.2012.02.020.Search in Google Scholar PubMed
131. Cui, Y, Zhang, H, Zhu, J, Liao, Z, Wang, S, Liu, W. Correlations of salivary and blood glucose levels among six saliva collection methods. Int J Environ Res Publ Health 2022;19. https://doi.org/10.3390/ijerph19074122.Search in Google Scholar PubMed PubMed Central
132. Han, P, Ivanovski, S. Effect of saliva collection methods on the detection of periodontium-related genetic and epigenetic biomarkers-A pilot study. Int J Mol Sci 2019;20. https://doi.org/10.3390/ijms20194729.Search in Google Scholar PubMed PubMed Central
133. Bhattarai, KR, Kim, HR, Chae, HJ. Compliance with saliva collection protocol in healthy volunteers: strategies for managing risk and errors. Int J Med Sci 2018;15:823–31. https://doi.org/10.7150/ijms.25146.Search in Google Scholar PubMed PubMed Central
134. Tajima, Y, Suda, Y, Yano, K. A case report of SARS-CoV-2 confirmed in saliva specimens up to 37 days after onset: proposal of saliva specimens for COVID-19 diagnosis and virus monitoring. J Infect Chemother 2020;26:1086–9. https://doi.org/10.1016/j.jiac.2020.06.011.Search in Google Scholar PubMed PubMed Central
135. Viloria, WA, Porter, MK, Romano, AE, Savela, ES, Akana, R, Shelby, N, et al.. Morning SARS-CoV-2 testing yields better detection of infection due to higher viral loads in saliva and nasal swabs upon waking. Microbiol Spectr 2022;10:e0387322. https://doi.org/10.1128/spectrum.03873-22.Search in Google Scholar PubMed PubMed Central
136. Katayama, Y, Murai, R, Moriai, M, Nirasawa, S, Saeki, M, Yakuwa, Y, et al.. Does the timing of saliva collection affect the diagnosis of SARS-CoV-2 infection? J Infect Chemother 2022;28:1012–14. https://doi.org/10.1016/j.jiac.2022.03.009.Search in Google Scholar PubMed PubMed Central
137. Mohamed, R, Campbell, JL, Cooper-White, J, Dimeski, G, Punyadeera, C. The impact of saliva collection and processing methods on CRP, IgE, and myoglobin immunoassays. Clin Transl Med 2012;1:19. https://doi.org/10.1186/2001-1326-1-19.Search in Google Scholar PubMed PubMed Central
138. Bellagambi, FG, Lomonaco, T, Salvo, P, Vivaldi, F, Hangouët, M, Ghimenti, S, et al.. Saliva sampling: methods and devices. An overview. TrAC, Trends Anal Chem 2020;124:115781. https://doi.org/10.1016/j.trac.2019.115781.Search in Google Scholar
139. Almukainzi, M. Saliva sampling in therapeutic drug monitoring and physiologically based pharmacokinetic modeling: review. Drug Res 2023;73:65–9. https://doi.org/10.1055/a-1956-9313.Search in Google Scholar PubMed
140. Fey, JMH, Bikker, FJ, Hesse, D. Saliva collection methods among children and adolescents: a scoping review. Mol Diagn Ther 2024;28:15–26. https://doi.org/10.1007/s40291-023-00684-9.Search in Google Scholar PubMed PubMed Central
141. Meng, M, Zhou, X, Zhang, Q, Zou, J. The positive rate of saliva for the detection of 2019-nCoV and possible factors related to the sensitivity results. J Med Virol 2021;93:4136–40. https://doi.org/10.1002/jmv.26627.Search in Google Scholar PubMed
142. Cruz, HM, Marques, VA, Villela-Nogueira, CA, do, ÓKM, Lewis-Ximenez, LL, Lampe, E, et al.. An evaluation of different saliva collection methods for detection of antibodies against hepatitis C virus (anti-HCV). J Oral Pathol Med 2012;41:793–800. https://doi.org/10.1111/j.1600-0714.2012.01176.x.Search in Google Scholar PubMed
143. Portilho, MM, Mendonça, A, Marques, VA, Nabuco, LC, Villela-Nogueira, CA, Ivantes, C, et al.. Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus. Oral Dis 2017;23:1072–9. https://doi.org/10.1111/odi.12692.Search in Google Scholar PubMed
144. Davenport, C, Arevalo-Rodriguez, I, Mateos-Haro, M, Berhane, S, Dinnes, J, Spijker, R, et al.. The effect of sample site and collection procedure on identification of SARS-CoV-2 infection. Cochrane Database Syst Rev 2024;12:Cd014780. https://doi.org/10.1002/14651858.CD014780.Search in Google Scholar PubMed PubMed Central
145. Kalk, WW, Vissink, A, Spijkervet, FK, Bootsma, H, Kallenberg, CG, Nieuw Amerongen, AV. Sialometry and sialochemistry: diagnostic tools for sjögren’s syndrome. Ann Rheum Dis 2001;60:1110–6. https://doi.org/10.1136/ard.60.12.1110.Search in Google Scholar PubMed PubMed Central
146. Atyeo, N, Maldonado, JO, Warner, BM, Chiorini, JA. Salivary glands and viral pathogenesis. J Dent Res 2024;103:227–34. https://doi.org/10.1177/00220345231222871.Search in Google Scholar PubMed PubMed Central
147. Ghosh, S, Kumar, M, Santiana, M, Mishra, A, Zhang, M, Labayo, H, et al.. Enteric viruses replicate in salivary glands and infect through saliva. Nature 2022;607:345–50. https://doi.org/10.1038/s41586-022-04895-8.Search in Google Scholar PubMed PubMed Central
148. Morgan, DG, Niederman, JC, Miller, G, Smith, HW, Dowaliby, JM. Site of Epstein-Barr virus replication in the oropharynx. Lancet 1979;2:1154–7. https://doi.org/10.1016/s0140-6736-79-92384-5.Search in Google Scholar
149. Okabayashi, K, Wakao, Y, Narita, T. Release of secretory immunoglobulin A by submandibular gland via β adrenergic receptor stimulation. Arch Oral Biol 2021;129:105209. https://doi.org/10.1016/j.archoralbio.2021.105209.Search in Google Scholar PubMed
150. Blommel, JH, Roforth, MM, Jerde, CR, Karsten, CA, Bridgeman, AR, Voss, JS, et al.. Evaluating user experience and DNA yield from self-collection devices. J Appl Lab Med 2024;9:704–15. https://doi.org/10.1093/jalm/jfae030.Search in Google Scholar PubMed
151. Moroni-Zentgraf, P, Keller, C, Eschenfelder, CC, Walter Müller, H, Sigmund, R, Galeana-Cadena, D, et al.. Salivette® Cortisol versus oropharyngeal swabbing for the detection of SARS-CoV-2 infection. Expert Rev Mol Diagn 2023;23:1011–14. https://doi.org/10.1080/14737159.2023.2260308.Search in Google Scholar PubMed
152. Tan, NK, Carrington, D, Pope, CF. Detecting human cytomegalovirus in urine, vagina and saliva: impact of biological fluids and storage durations and temperatures on CMV DNA recovery. J Med Virol 2023;95:e29081. https://doi.org/10.1002/jmv.29081.Search in Google Scholar PubMed
153. Ko, HY, Li, YT, Li, YY, Chiang, MT, Lee, YL, Liu, WC, et al.. Optimization and improvement of qPCR detection sensitivity of SARS-CoV-2 in saliva. Microbiol Spectr 2023;11:e0464022. https://doi.org/10.1128/spectrum.04640-22.Search in Google Scholar PubMed PubMed Central
154. Oguri, S, Fujisawa, S, Kamada, K, Nakakubo, S, Yamashita, Y, Nakamura, J, et al.. Effect of varying storage conditions on diagnostic test outcomes of SARS-CoV-2. J Infect 2021;83:119–45. https://doi.org/10.1016/j.jinf.2021.03.026.Search in Google Scholar PubMed PubMed Central
155. Marín-Echeverri, C, Pérez-Zapata, L, Álvarez-Acevedo, L, Gutiérrez-Hincapié, S, Adams-Parra, M, Tirado-Duarte, D, et al.. Diagnostic performance, stability, and acceptability of self-collected saliva without additives for SARS-CoV-2 molecular diagnosis. Eur J Clin Microbiol Infect Dis 2024;43:1127–38. https://doi.org/10.1007/s10096-024-04819-6.Search in Google Scholar PubMed
156. Griesemer, SB, Van Slyke, G, Ehrbar, D, Strle, K, Yildirim, T, Centurioni, DA, et al.. Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. J Clin Microbiol 2021;59. https://doi.org/10.1128/jcm.01418-20.Search in Google Scholar
157. Frediani, JK, McLendon, KB, Westbrook, A, Gillespie, SE, Wood, A, Baugh, TJ, et al.. SARS-CoV-2 reliably detected in frozen saliva samples stored up to one year. PLoS One 2022;17:e0272971. https://doi.org/10.1371/journal.pone.0272971.Search in Google Scholar PubMed PubMed Central
158. Dzung, A, Cheng, PF, Stoffel, C, Tastanova, A, Turko, P, Levesque, MP, et al.. Prolonged unfrozen storage and repeated freeze-thawing of SARS-CoV-2 patient samples have minor effects on SARS-CoV-2 detectability by RT-PCR. J Mol Diagn 2021;23:691–7. https://doi.org/10.1016/j.jmoldx.2021.03.003.Search in Google Scholar PubMed PubMed Central
159. Marshall, T, Williams, KM. Electrophoresis indicates protein loss on centrifugation of whole saliva. Clin Chem 1987;33:1263–4. https://doi.org/10.1093/clinchem/33.7.1263.Search in Google Scholar
160. Veguilla, V, Fowlkes, AL, Bissonnette, A, Beitel, S, Gaglani, M, Porucznik, CA, et al.. Detection and stability of SARS-CoV-2 in three self-collected specimen types: flocked midturbinate swab (MTS) in viral transport media, foam MTS, and saliva. Microbiol Spectr 2022;10:e0103322. https://doi.org/10.1128/spectrum.01033-22.Search in Google Scholar PubMed PubMed Central
161. Banada, P, Elson, D, Daivaa, N, Park, C, Desind, S, Montalvan, I, et al.. Sample collection and transport strategies to enhance yield, accessibility, and biosafety of COVID-19 RT-PCR testing. J Med Microbiol 2021;70. https://doi.org/10.1099/jmm.0.001380.Search in Google Scholar PubMed PubMed Central
162. Goshen, O, Goldfarb, DM, Book, L, Tilley, P, Gantt, S. Recovery of cytomegalovirus DNA from newborn saliva samples by different methods. J Clin Virol 2018;104:73–6. https://doi.org/10.1016/j.jcv.2018.05.001.Search in Google Scholar PubMed
163. Tan, NK, Pope, CF, Carrington, D. Screening for cytomegalovirus shedding in vagina and saliva: significant differences between biological fluids, swab types and storage durations in DNA recovery. J Clin Virol 2022;146:105055. https://doi.org/10.1016/j.jcv.2021.105055.Search in Google Scholar PubMed
164. Banik, S, Saibire, K, Suryavanshi, S, Johns, G, Chakravorty, S, Kwiatkowski, R, et al.. Inactivation of SARS-CoV-2 virus in saliva using a guanidium based transport medium suitable for RT-PCR diagnostic assays. PLoS One 2021;16:e0252687. https://doi.org/10.1371/journal.pone.0252687.Search in Google Scholar PubMed PubMed Central
165. Nishibata, Y, Koshimoto, S, Ogaki, K, Ishikawa, E, Wada, K, Yoshinari, M, et al.. RNase in the saliva can affect the detection of severe acute respiratory syndrome coronavirus 2 by real-time one-step polymerase chain reaction using saliva samples. Pathol Res Pract 2021;220:153381. https://doi.org/10.1016/j.prp.2021.153381.Search in Google Scholar PubMed PubMed Central
166. Esser, D, Alvarez-Llamas, G, de Vries, MP, Weening, D, Vonk, RJ, Roelofsen, H. Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomark Insights 2008;3:25–7. https://doi.org/10.4137/bmi.s607.Search in Google Scholar PubMed PubMed Central
167. Parker, SP, Cubitt, WD. The use of the dried blood spot sample in epidemiological studies. J Clin Pathol 1999;52:633–9. https://doi.org/10.1136/jcp.52.9.633.Search in Google Scholar PubMed PubMed Central
168. Treviño-Nakoura, A, Sepúlveda-Crespo, D, Bellon, JM, Codina, H, Amigot-Sánchez, R, Quero-Delgado, M, et al.. Diagnostic performance of dried blood spot hepatitis C virus core antigen testing for hepatitis C screening: a systematic review and meta-analysis. J Med Virol 2024;96:e70018. https://doi.org/10.1002/jmv.70018.Search in Google Scholar PubMed
169. Sheikhakbari, S, Mokhtari-Azad, T, Salimi, V, Norouzbabaei, Z, Abbasi, S, Zahraei, SM, et al.. The use of oral fluid samples spotted on filter paper for the detection of measles virus using nested rt-PCR. J Clin Lab Anal 2012;26:215–22. https://doi.org/10.1002/jcla.21496.Search in Google Scholar PubMed PubMed Central
170. Abdel-Rehim, A, Abdel-Rehim, M. Dried saliva spot as a sampling technique for saliva samples. Biomed Chromatogr 2014;28:875–7. https://doi.org/10.1002/bmc.3193.Search in Google Scholar PubMed
171. Han, Y, Li, XL, Zhang, M, Wang, J, Zeng, S, Min, JZ. Potential use of a dried saliva spot (DSS) in therapeutic drug monitoring and disease diagnosis. J Pharm Anal 2022;12:815–23. https://doi.org/10.1016/j.jpha.2021.11.001.Search in Google Scholar PubMed PubMed Central
172. Jacques, ALB, Santos, MKD, Limberger, RP. Development and validation of a method using dried oral fluid spot to determine drugs of abuse. J Forensic Sci 2019;64:1906–12. https://doi.org/10.1111/1556-4029.14112.Search in Google Scholar PubMed
173. Pasternak, Y, Oikawa, MT, Mendelson, E, Osovsky, M, Klinger, G, Bilavsky, E. Diagnosing congenital cytomegalovirus by saliva on guthrie paper. J Clin Virol 2020;126:104337. https://doi.org/10.1016/j.jcv.2020.104337.Search in Google Scholar PubMed
174. Sibounheuang, B, Boutthasavong, L, Chommanam, D, Phommasone, K, Panapruksachat, S, Praphasiri, V, et al.. Dry swabs and dried saliva as alternative samples for SARS-CoV-2 detection in remote areas in Lao PDR. Open Forum Infect Dis 2024;11:ofae433. https://doi.org/10.1093/ofid/ofae433.Search in Google Scholar PubMed PubMed Central
175. Lahdentausta, L, Kivimäki, A, Oksanen, L, Tallgren, M, Oksanen, S, Sanmark, E, et al.. Blood and saliva SARS-CoV-2 antibody levels in self-collected dried spot samples. Med Microbiol Immunol 2022;211:173–83. https://doi.org/10.1007/s00430-022-00740-x.Search in Google Scholar PubMed PubMed Central
176. Wang, M, Kamali-Moghaddam, M, Löf, L, Cortabarría Fernandez, M, Díaz Codina, R, Sterky, FH, et al.. Monitoring SARS-CoV-2 IgA, IgM and IgG antibodies in dried blood and saliva samples using antibody proximity extension assays (AbPEA). Sci Rep 2024;14:21655. https://doi.org/10.1038/s41598-024-72453-5.Search in Google Scholar PubMed PubMed Central
177. Xiao, H, Wong, DT. Proteomic analysis of microvesicles in human saliva by gel electrophoresis with liquid chromatography-mass spectrometry. Anal Chim Acta 2012;723:61–7. https://doi.org/10.1016/j.aca.2012.02.018.Search in Google Scholar PubMed
178. Iwai, K, Minamisawa, T, Suga, K, Yajima, Y, Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 2016;5:30829. https://doi.org/10.3402/jev.v5.30829.Search in Google Scholar PubMed PubMed Central
179. Song, SW, Gupta, R, Jothilingam, N, Qian, X, Gu, Y, Lee, VV, et al.. SHEAR saliva collection device augments sample properties for improved analytical performance. Bioeng Transl Med 2023;8:e10490. https://doi.org/10.1002/btm2.10490.Search in Google Scholar PubMed PubMed Central
180. Hardt, M, Kaiser, F, Voss, T, Oelmüller, U, Zatloukal, K. Pre-analytical properties of different respiratory viruses for PCR-based detection: comparative analysis of sampling devices and sample stabilization solutions. N Biotechnol 2024;79:60–70. https://doi.org/10.1016/j.nbt.2023.12.005.Search in Google Scholar PubMed
181. Hardt, M, Föderl-Höbenreich, E, Freydl, S, Kouros, A, Loibner, M, Zatloukal, K. Pre-analytical sample stabilization by different sampling devices for PCR-based COVID-19 diagnostics. N Biotechnol 2022;70:19–27. https://doi.org/10.1016/j.nbt.2022.04.001.Search in Google Scholar PubMed PubMed Central
182. Ali, Z, Wang, J, Mou, X, Tang, Y, Li, T, Liang, W, et al.. Integration of nucleic acid extraction protocol with automated extractor for multiplex viral detection. J Nanosci Nanotechnol 2017;17:862–70. https://doi.org/10.1166/jnn.2017.12613.Search in Google Scholar PubMed
183. Safiabadi Tali, SH, LeBlanc, JJ, Sadiq, Z, Oyewunmi, OD, Camargo, C, Nikpour, B, et al.. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clin Microbiol Rev 2021;34. https://doi.org/10.1128/cmr.00228-20.Search in Google Scholar PubMed PubMed Central
184. Amaral, C, Antunes, W, Moe, E, Duarte, AG, Lima, LMP, Santos, C, et al.. A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Sci Rep 2021;11:16430. https://doi.org/10.1038/s41598-021-95799-6.Search in Google Scholar PubMed PubMed Central
185. White, D, Gu, J, Steinberg, CJ, Yamamura, D, Salena, BJ, Balion, C, et al.. Investigation of discordant SARS-CoV-2 RT-PCR results using minimally processed saliva. Sci Rep 2022;12:2806. https://doi.org/10.1038/s41598-022-06642-5.Search in Google Scholar PubMed PubMed Central
186. Ham, RE, Smothers, AR, King, KL, Napolitano, JM, Swann, TJ, Pekarek, LG, et al.. Efficient SARS-CoV-2 quantitative reverse transcriptase PCR saliva diagnostic strategy utilizing open-source pipetting robots. J Vis Exp 2022;180:e63395. https://doi.org/10.3791/63395.Search in Google Scholar PubMed PubMed Central
187. Azmi, I, Faizan, MI, Kumar, R, Raj Yadav, S, Chaudhary, N, Kumar Singh, D, et al.. A saliva-based RNA extraction-free workflow integrated with Cas13a for SARS-CoV-2 detection. Front Cell Infect Microbiol 2021;11:632646. https://doi.org/10.3389/fcimb.2021.632646.Search in Google Scholar PubMed PubMed Central
188. Najjar, D, Rainbow, J, Sharma Timilsina, S, Jolly, P, de Puig, H, Yafia, M, et al.. A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat Biomed Eng 2022;6:968–78. https://doi.org/10.1038/s41551-022-00919-w.Search in Google Scholar PubMed PubMed Central
189. Aita, A, Navaglia, F, Moz, S, Contran, N, Barbaro, F, Cattelan, AM, et al.. New insights into SARS-CoV-2 lumipulse G salivary antigen testing: accuracy, safety and short TAT enhance surveillance. Clin Chem Lab Med 2023;61:323–31. https://doi.org/10.1515/cclm-2022-0849.Search in Google Scholar PubMed
190. Lamy, E, Rubio, CP, Carreira, L, Capela, ESF, Martinez-Subiela, S, Tecles, F, et al.. Effect of thermal and chemical treatments used for SARS-COV-2 inactivation in the measurement of saliva analytes. Sci Rep 2022;12:9434. https://doi.org/10.1038/s41598-022-13491-9.Search in Google Scholar PubMed PubMed Central
191. Donoso Mantke, O, Corman, VM, Taddei, F, McCulloch, E, Niemeyer, D, Grumiro, L, et al.. Importance of external quality assessment for SARS-CoV-2 antigen detection during the COVID-19 pandemic. J Clin Virol 2022;154:105222. https://doi.org/10.1016/j.jcv.2022.105222.Search in Google Scholar PubMed PubMed Central
192. Levett, PN, Cheung, B, Kustra, J, Pidduck, T, Mak, A, Tsang, F, et al.. Evaluation of a high volume antigen test for detection of SARS-CoV-2. J Clin Virol 2021;142:104938. https://doi.org/10.1016/j.jcv.2021.104938.Search in Google Scholar PubMed PubMed Central
193. Kordyukova, LV, Moiseenko, AV, Serebryakova, MV, Shuklina, MA, Sergeeva, MV, Lioznov, DA, et al.. Structural and immunoreactivity properties of the SARS-CoV-2 spike protein upon the development of an inactivated vaccine. Viruses 2023;15. https://doi.org/10.3390/v15020480.Search in Google Scholar PubMed PubMed Central
194. Heggestad, JT, Britton, RJ, Kinnamon, DS, Liu, J, Anderson, JG, Joh, DY, et al.. COVID-19 diagnosis and SARS-CoV-2 strain identification by a rapid, multiplexed, point-of-care antibody microarray. Anal Chem 2023;95:5610–17. https://doi.org/10.1021/acs.analchem.2c05180.Search in Google Scholar PubMed PubMed Central
195. Pilchová, V, Prajeeth, CK, Jendrny, P, Twele, F, Meller, S, Pink, I, et al.. β-Propiolactone (BPL)-inactivation of SARS-Co-V-2: in vitro validation with focus on saliva from COVID-19 patients for scent dog training. J Virol Methods 2023;317:114733. https://doi.org/10.1016/j.jviromet.2023.114733.Search in Google Scholar PubMed PubMed Central
196. Barancheshme, F, Philibert, J, Noam-Amar, N, Gerchman, Y, Barbeau, B. Assessment of saliva interference with UV-based disinfection technologies. J Photochem Photobiol, B 2021;217:112168. https://doi.org/10.1016/j.jphotobiol.2021.112168.Search in Google Scholar PubMed PubMed Central
197. Aro, K, Wei, F, Wong, DT, Tu, M. Saliva liquid biopsy for point-of-care applications. Front Public Health 2017;5:77. https://doi.org/10.3389/fpubh.2017.00077.Search in Google Scholar PubMed PubMed Central
198. Murr, A, Pink, C, Hammer, E, Michalik, S, Dhople, VM, Holtfreter, B, et al.. Cross-sectional association of salivary proteins with age, sex, body mass index, smoking, and education. J Proteome Res 2017;16:2273–81. https://doi.org/10.1021/acs.jproteome.7b00133.Search in Google Scholar PubMed
199. Gonzalez-Begne, M, Lu, B, Liao, L, Xu, T, Bedi, G, Melvin, JE, et al.. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology. J Proteome Res 2011;10:5031–46. https://doi.org/10.1021/pr200505t.Search in Google Scholar PubMed PubMed Central
200. Stone, MD, Chen, X, McGowan, T, Bandhakavi, S, Cheng, B, Rhodus, NL, et al.. Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J Proteome Res 2011;10:1728–36. https://doi.org/10.1021/pr1010247.Search in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston