Home No additional value of conventional and high-sensitivity cardiac troponin over clinical scoring systems in the differential diagnosis of type 1 vs. type 2 myocardial infarction
Article
Licensed
Unlicensed Requires Authentication

No additional value of conventional and high-sensitivity cardiac troponin over clinical scoring systems in the differential diagnosis of type 1 vs. type 2 myocardial infarction

  • Luciano Consuegra-Sánchez EMAIL logo , Juan José Martínez-Díaz , Luis García de Guadiana-Romualdo , Samantha Wasniewski , Patricia Esteban-Torrella , Francisco Guillermo Clavel-Ruipérez , Alfredo Bardají , Juan Antonio Castillo-Moreno and Juan Carlos Kaski
Published/Copyright: January 5, 2018

Abstract

Background:

The distinction of type 1 and type 2 myocardial infarction (MI) is of major clinical importance. Our aim was to evaluate the diagnostic ability of absolute and relative conventional cardiac troponin I (cTnI) and high-sensitivity cardiac troponin T (hs-cTnT) in the distinction between type 1 and type 2 MI in patients presenting at the emergency department with non-ST-segment elevation acute chest pain within the first 12 h.

Methods:

We measured cTnI (Dimension Vista) and hs-cTnT (Cobas e601) concentrations at presentation and after 4 h in 200 patients presenting with suspected acute MI. The final diagnosis, based on standard criteria, was adjudicated by two independent cardiologists.

Results:

One hundred and twenty-five patients (62.5%)were classified as type 1 MI and 75 (37.5%) were type 2 MI. In a multivariable setting, age (relative risk [RR]=1.43, p=0.040), male gender (RR=2.22, p=0.040), T-wave inversion (RR=8.51, p<0.001), ST-segment depression (RR=8.71, p<0.001) and absolute delta hs-cTnT (RR=2.10, p=0.022) were independently associated with type 1 MI. In a receiver operating characteristic curve analysis, the discriminatory power of absolute delta cTnI and hs-cTnT was significantly higher compared to relative c-TnI and hs-cTnT changes. The additive information provided by cTnI and hs-cTnT over and above the information provided by the “clinical” model was only marginal.

Conclusions:

The diagnostic information provided by serial measurements of conventional or hs-cTnT is not better than that yielded by a simple clinical scoring model. Absolute changes are more informative than relative troponin changes.


aLuciano Consuegra-Sánchez and Juan José Martínez-Díaz contributed equally to this work.
Corresponding author: Luciano Consuegra-Sánchez, MD, PhD, Servicio de Cardiología, Hospital General Universitario de Santa Lucía, Universidad Católica San Antonio de Murcia (UCAM), Paraje los Arcos, S/N, 30201, Cartagena, Murcia, Spain, Phone: +34 658659063

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Pitts SR, Niska RW, Xu J, Burt CW. National hospital ambulatory medical care survey: 2006 emergency department summary. Natl Health Stat Report 2008;6:1–38.Search in Google Scholar

2. Thygesen K, Mair J, Katus H, Plebani M, Venge P, Collinson P, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 2010;31:2197–204.10.1093/eurheartj/ehq251Search in Google Scholar PubMed

3. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016;37:267–315.10.1093/eurheartj/ehv320Search in Google Scholar PubMed

4. Love SA, Sandoval Y, Smith SW, Nicholson J, Cao J, Ler R, et al. Incidence of undetectable, measurable, and increased cardiac troponin I concentrations above the 99th percentile using a high-sensitivity vs a contemporary assay in patients presenting to the emergency department. Clin Chem 2016;62:1115–9.10.1373/clinchem.2016.256305Search in Google Scholar PubMed

5. Sanchis J, García-Blas S, Mainar L, Mollar A, Abellán L, Ventura S, et al. High-sensitivity versus conventional troponin for management and prognosis assessment of patients with acute chest pain. Heart 2014;100:1591–6.10.1136/heartjnl-2013-305440Search in Google Scholar PubMed

6. Ungerer JP, Tate JR, Pretorius CJ. Discordance with 3 cardiac troponin I and T assays: implications for the 99th percentile cutoff. Clin Chem 2016;62:1106–14.10.1373/clinchem.2016.255281Search in Google Scholar PubMed

7. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Glob Heart 2012;7:275–95.10.1016/j.gheart.2012.08.001Search in Google Scholar PubMed

8. Collinson P, Lindahl B. Type 2 myocardial infarction: the chimaera of cardiology? Heart 2015;101:1697–703.10.1136/heartjnl-2014-307122Search in Google Scholar PubMed

9. Mueller M, Biener M, Vafaie M, Doerr S, Keller T, Blankenberg S, et al. Absolute and relative kinetic changes of high-sensitivity cardiac troponin T in acute coronary syndrome and in patients with increased troponin in the absence of acute coronary syndrome. Clin Chem 2012;58:209–18.10.1373/clinchem.2011.171827Search in Google Scholar PubMed

10. Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011;124:136–45.10.1161/CIRCULATIONAHA.111.023937Search in Google Scholar PubMed

11. Saaby L, Poulsen TS, Hosbond S, Larsen TB, Pyndt Diederichsen AC, Hallas J, et al. Classification of myocardial infarction: frequency and features of type 2 myocardial infarction. Am J Med 2013;126:789–97.10.1016/j.amjmed.2013.02.029Search in Google Scholar PubMed

12. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012;33:2252–7.10.1093/eurheartj/ehs154Search in Google Scholar

13. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45.10.2307/2531595Search in Google Scholar

14. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993;39:561–77.10.1093/clinchem/39.4.561Search in Google Scholar

15. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet (London, England) 2003;361:13–20.10.1016/S0140-6736(03)12113-7Search in Google Scholar

16. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment Elevation. Rev Esp Cardiol (Engl Ed) 2015;68:1125.Search in Google Scholar

17. Cediel G, Gonzalez-del-Hoyo M, Carrasquer A, Sanchez R, Boqué C, Bardají A. Outcomes with type 2 myocardial infarction compared with non-ischaemic myocardial injury. Heart 2017;103:616–22.10.1136/heartjnl-2016-310243Search in Google Scholar PubMed

18. Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, Storrow AB, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem 2007;53:552–74.10.1373/clinchem.2006.084194Search in Google Scholar PubMed

19. Kavsak PA, MacRae AR. Letter by Kavsak and MacRae regarding article, “Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction”. Circulation 2012;125:e358; author reply e359.10.1161/CIRCULATIONAHA.111.057885Search in Google Scholar PubMed

Received: 2017-7-12
Accepted: 2017-12-5
Published Online: 2018-1-5
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorials
  3. Scientific publishing in the “predatory” era
  4. The influence of age and other biological variables on the estimation of reference limits of cardiac troponin T
  5. Reviews
  6. Prognostic and predictive value of EGFR and EGFR-ligands in blood of breast cancer patients: a systematic review
  7. GSTP1 methylation in cancer: a liquid biopsy biomarker?
  8. Opinion Paper
  9. Practical recommendations for managing hemolyzed samples in clinical chemistry testing
  10. Genetics and Molecular Diagnostics
  11. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR
  12. Circulating miR-21, miR-210 and miR-146a as potential biomarkers to differentiate acute tubular necrosis from hepatorenal syndrome in patients with liver cirrhosis: a pilot study
  13. Pleiotropy of ABO gene: correlation of rs644234 with E-selectin and lipid levels
  14. General Clinical Chemistry and Laboratory Medicine
  15. Three-year customer satisfaction survey in laboratory medicine in a Chinese university hospital
  16. Measurement of sirolimus concentrations in human blood using an automated electrochemiluminescence immunoassay (ECLIA): a multicenter evaluation
  17. Precision, accuracy, cross reactivity and comparability of serum indices measurement on Abbott Architect c8000, Beckman Coulter AU5800 and Roche Cobas 6000 c501 clinical chemistry analyzers
  18. Commutability of control materials for external quality assessment of serum apolipoprotein A-I measurement
  19. Development of a new biochip array for APOE4 classification from plasma samples using immunoassay-based methods
  20. Validation of a high-performance liquid chromatography method for thiopurine S-methyltransferase activity in whole blood using 6-mercaptopurine as substrate
  21. Increased serum concentrations of soluble ST2 are associated with pulmonary complications and mortality in polytraumatized patients
  22. Reference Values and Biological Variations
  23. Determination of age- and sex-specific 99th percentiles for high-sensitive troponin T from patients: an analytical imprecision- and partitioning-based approach
  24. Effect of preanalytical and analytical variables on the clinical utility of mean platelet volume
  25. Serum prolactin levels across pregnancy and the establishment of reference intervals
  26. Gender-partitioned patient medians of serum albumin requested by general practitioners for the assessment of analytical stability
  27. Cancer Diagnostics
  28. Detection of EGFR, KRAS and BRAF mutations in metastatic cells from cerebrospinal fluid
  29. Cardiovascular Diseases
  30. No additional value of conventional and high-sensitivity cardiac troponin over clinical scoring systems in the differential diagnosis of type 1 vs. type 2 myocardial infarction
  31. Letters to the Editor
  32. Rare inclusion bodies within monocytes at accelerated phase of Chediak-Higashi syndrome
  33. A specific abnormal scattergram of peripheral blood leukocytes that may suggest hairy cell leukemia
  34. Spuriously low lymphocyte count associated with pseudoerythroblastemia in a patient with chronic lymphocytic leukemia treated with ibrutinib
  35. Performance evaluation of a new automated fourth-generation HIV Ag/Ab combination chemiluminescence immunoassay
  36. False increase of glycated hemoglobin due to aspirin interference in Tosoh G8 analyzer
  37. Assessment of in vitro stability: a call for harmonization across studies
  38. Comparison between blood gas analyzer and central laboratory analyzer for the determination of electrolytes in patients with acute respiratory acidosis
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2017-0609/html
Scroll to top button