Home Clinical autoantibody detection by microarray
Article
Licensed
Unlicensed Requires Authentication

Clinical autoantibody detection by microarray

  • Doreen Dillaerts , Heidi De Baere and Xavier Bossuyt EMAIL logo
Published/Copyright: September 22, 2016

Abstract

Background:

AMiDot is a microdot array-based immunoassay that allows simultaneous detection of multiple autoantibodies on a single patient. We evaluated the AMiDot “Systemic Autoimmune Disease” (SAD) panel, which detects antibodies to 17 different antigens.

Methods:

AMiDot was performed on 184 samples from blood donors and on 280 randomly selected clinical samples containing antibodies to extractable nuclear antigens or to dsDNA. The results obtained by AMiDot on the clinical samples were compared to results obtained by EliA (Thermo Fisher) for anti-Ro60, anti-La, anti-RNP, anti-Scl-70, anti-CENPB, anti-Sm, and anti-Jo-1 and by Farr assay for anti-dsDNA. Discordant results were further analyzed by immunodot (D-tek).

Results:

Concordance between AMiDot and EliA was ≥87% and κ agreement ≥0.44. When compared to EliA and immunodot (in case of discordance between AMiDot and EliA), concordance improved to ≥91% and κ agreement to ≥0.77. The sensitivity of AMiDot (compared to EliA and immunodot, in case of discordance between AMiDot and EliA) was ≥93%, except for anti-Ro60 (84%). The concordance and κ agreement of AMiDot with the Farr assay (for dsDNA antibodies) was, respectively, 84% and 0.33. The sensitivity of AMiDot for dsDNA (compared to Farr assay) was 25%. The specificity was ≥97% (in blood donors as well as in clinical samples). The within-run imprecision was 9%–27% and the between-run imprecision 29%–39%.

Conclusions:

AMiDot offers an alternative to line immunodot assay. Individual antibody assays might suffer from low sensitivity.

Acknowledgments

We thank Keith Rawson for helpful discussions and Menarini for providing reagents and supporting the study.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: X.B. has received lecture fees from Menarini.

  3. Employment or leadership: H.D. is employed by Menarini.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis 2014;73:17–23.10.1136/annrheumdis-2013-203863Search in Google Scholar PubMed

2. Mahler M, Meroni PL, Bossuyt X, Fritzler MJ. Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. J Immunol Res 2014;2014:315179.10.1155/2014/315179Search in Google Scholar PubMed PubMed Central

3. Op De Beéck K, Vermeersch P, Verschueren P, Westhovens R, Mariën G, Blockmans D, et al. Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis. Autoimmun Rev 2012;12:137–43.10.1016/j.autrev.2012.02.013Search in Google Scholar PubMed

4. Robinson WH, DiGennaro C, Hueber W, Haab BB, Kamachi M, Dean EJ, et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 2002;8:295–301.10.1038/nm0302-295Search in Google Scholar PubMed

5. Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol 2014;133:880–2.e10.10.1016/j.jaci.2013.11.038Search in Google Scholar PubMed PubMed Central

6. Glick MR, Ryder KW, Jackson SA. Graphical comparisons of interferences in clinical chemistry instrumentation. Clin Chem 1986;32:470–5.10.1093/clinchem/32.3.470Search in Google Scholar

7. Bossuyt X, Schiettekatte G, Bogaerts A, Blanckaert N. Serum protein electrophoresis by CZE 2000 clinical capillary electrophoresis system. Clin Chem 1998;44:749–59.10.1093/clinchem/44.4.749Search in Google Scholar

8. Kallenberg CG. Usefulness of antineutrophil cytoplasmic autoantibodies in diagnosing and managing systemic vasculitis. Curr Opin Rheumatol 2016;28:8–14.10.1097/BOR.0000000000000233Search in Google Scholar PubMed

9. Bossuyt X, Louche C, Wiik A. Standardisation in clinical laboratory medicine: an ethical reflection. Ann Rheum Dis 2008;67:1061–3.10.1136/ard.2007.084228Search in Google Scholar PubMed

10. Meroni PL, Biggioggero M, Pierangeli SS, Sheldon J, Zegers I, Borghi MO. Standardization of autoantibody testing: a paradigm for serology in rheumatic diseases. Nat Rev Rheumatol 2014;10:35–43.10.1038/nrrheum.2013.180Search in Google Scholar PubMed

11. Autoantibody Standardization Committee. AutoAb.org. Available at: http://asc.dental.ufl.edu/.Search in Google Scholar

12. Harmonisation of Autoantibody Tests (WG-HAT). International Federation of Clinical Chemistry and Laboratory Medicine. Available at: http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/harmonisation-of-autoantibody-tests-wg-hat.Search in Google Scholar

13. Shoenfeld Y, Cervera R, Haass M, Kallenberg C, Khamashta M, Meroni P, et al. EASI – The European Autoimmunity Standardisation Initiative: a new initiative that can contribute to agreed diagnostic models of diagnosing autoimmune disorders throughout Europe. Ann N Y Acad Sci 2007;1109:138–44.10.1196/annals.1398.016Search in Google Scholar PubMed

Received: 2016-6-18
Accepted: 2016-7-29
Published Online: 2016-9-22
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The central role of external quality assurance in harmonisation and standardisation for laboratory medicine
  4. Review
  5. Fecal calprotectin in inflammatory bowel diseases: update and perspectives
  6. Mini Review
  7. Factor VIIa-antithrombin complex: a possible new biomarker for activated coagulation
  8. Opinion Papers
  9. Improving quality in the preanalytical phase through innovation, on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE)
  10. Metabolite profiling can change health-care delivery to obese patients with fatty liver disease: the search for biomarkers
  11. Genetics and Molecular Diagnostics
  12. Rapid screening for targeted genetic variants via high-resolution melting curve analysis
  13. Evaluation of the new cobas® HCV genotyping test based on real-time PCRs of three different HCV genome regions
  14. General Clinical Chemistry and Laboratory Medicine
  15. Harmonisation of serum dihydrotestosterone analysis: establishment of an external quality assurance program
  16. Spanish Preanalytical Quality Monitoring Program (SEQC), an overview of 12 years’ experience
  17. Peer groups splitting in Croatian EQA scheme: a trade-off between homogeneity and sample size number
  18. Prevalence of pseudonatremia in a clinical laboratory – role of the water content
  19. Retrospective validation of a β-trace protein interpretation algorithm for the diagnosis of cerebrospinal fluid leakage
  20. Economic evaluation of procalcitonin-guided antibiotic therapy in acute respiratory infections: a Chinese hospital system perspective
  21. Performance evaluation of ImmunoCAP® ISAC 112: a multi-site study
  22. Clinical autoantibody detection by microarray
  23. Cardiovascular Diseases
  24. Kinetics of troponin I in patients with myocardial injury after noncardiac surgery
  25. Infectious Diseases
  26. P35 and P22 Toxoplasma gondii antigens abbreviate regions to diagnose acquired toxoplasmosis during pregnancy: toward single-sample assays
  27. Letters to the Editor
  28. Deciphering a macro-troponin I complex; a case report
  29. Interference of laboratory disinfection with trichloro-isocyanuric acid on cardiac troponin I measurement using the Vitros immunoassay system
  30. Massive interference in free T4 and free T3 assays misleading clinical judgment
  31. In defense of aldosterone measurement by immunoassay: a broader perspective
  32. The prevalence of hemolysis – a survey using hemolysis index
  33. Detection of BRAFV600K mutant tumor-derived DNA in the pleural effusion from a patient with metastatic melanoma
  34. Evaluation of the accuracy of the Greiner Bio-One FC Mix Glucose tube
  35. Congress Abstracts
  36. 4th EFLM-BD European Conference on Preanalytical Phase Amsterdam (NL), 24–25 March 2017
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2016-0533/html
Scroll to top button