Home Long-term stability of glucose: 96-h study using Terumo Glycaemia tubes
Article
Licensed
Unlicensed Requires Authentication

Long-term stability of glucose: 96-h study using Terumo Glycaemia tubes

  • Theresa Winter EMAIL logo , Anne Greiser , Matthias Nauck and Astrid Petersmann
Published/Copyright: August 19, 2015

Abstract

Background: Long transportation times of samples can occur due to centralization of laboratories, and also in, for instance epidemiological multicenter studies with one core laboratory. Unsatisfactory glycolysis inhibition is known to threaten the correct measurements of glucose concentration in patient samples. In former studies Terumo Glycaemia tubes proved to be superior to other anticoagulant systems for time periods of up to 24 h. We investigated long-term stability of glucose concentration in Terumo Glycaemia tubes for up to 96 h at room temperature and imitated transport conditions by continuous sample shaking.

Methods: Human venous blood samples were collected from 40 healthy blood donors using Terumo Glycaemia tubes. Immediately after sampling, tubes were mixed according to the manufactures recommendations. To simulate transportation conditions samples were placed on a shaker for the entire study period and maintained at room temperature. Samples were (re)centrifuged at 0, 24, 36, 48, 72 and 96 h prior to measuring glucose concentration. The glucose concentration at 0 h was used as baseline for evaluation of long-term stability.

Results: The recovery of glucose was 100% throughout the study, including the 96-h measurements. Deviations of single glucose measurements were within the imprecision of the measurement procedure.

Conclusions: Terumo Glycaemia tubes can effectively stabilize glucose in whole blood samples kept at room temperature on a shaker during a 96-h time period. Therefore, we consider Terumo Glycaemia tubes as a suitable glucose stabilizing tube for long intervals between sample collection and glucose quantification.


Corresponding author: Dr. rer. nat. Theresa Winter, Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany, Phone: +49 3834 865541, Fax: +49 3834 865502, E-mail:

References

1. Bruns DE, Knowler WC. Stabilization of glucose in blood samples: why it matters. Clin Chem 2009;55:850–2.10.1373/clinchem.2009.126037Search in Google Scholar

2. Gambino R. Sodium fluoride: an ineffective inhibitor of glycolysis. Ann Clin Biochem 2013;50:3–5.10.1258/acb.2012.012135Search in Google Scholar

3. Gambino R, Piscitelli J, Ackattupathil TA, Theriault JL, Andrin RD, Sanfilippo ML, et al. Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin Chem 2009;55:1019–21.10.1373/clinchem.2008.121707Search in Google Scholar

4. Peake MJ, Bruns DE, Sacks DB, Horvath AR. It’s time for a better blood collection tube to improve the reliability of glucose results. Diabetes Care 2013;36:e2.10.2337/dc12-1312Search in Google Scholar

5. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002;48:436–72.10.1093/clinchem/48.3.436Search in Google Scholar

6. Fobker M. Stability of glucose in plasma with different anticoagulants. Clin Chem Lab Med 2014;52:1057–60.10.1515/cclm-2013-1049Search in Google Scholar

7. Uchida K, Matuse R, Toyoda E, Okuda S, Tomita S. A new method of inhibiting glycolysis in blood samples. Clin Chim Acta 1988;172:101–8.10.1016/0009-8981(88)90125-8Search in Google Scholar

8. Bowen RA, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb) 2014;24:31–44.Search in Google Scholar

9. Turchiano M, Nguyen C, Fierman A, Lifshitz M, Convit A. Impact of blood sample collection and processing methods on glucose levels in community outreach studies. J Environ Public Health 2013;2013:256151.10.1155/2013/256151Search in Google Scholar PubMed PubMed Central

10. Li G, Cabanero M, Wang Z, Wang H, Huang T, Alexis H, et al. Comparison of glucose determinations on blood samples collected in three types of tubes. Ann Clin Lab Sci 2013;43:278–84.Search in Google Scholar

11. Stahl M, Jorgensen LG, Hyltoft Petersen P, Brandslund I, de Fine Olivarius N, Borch-Johnsen K. Optimization of preanalytical conditions and analysis of plasma glucose. 1. Impact of the new WHO and ADA recommendations on diagnosis of diabetes mellitus. Scand J Clin Lab Invest 2001;61:169–79.10.1080/003655101300133612Search in Google Scholar PubMed

12. Revision of the “Guideline of the German Medical Association on Quality Assurance in Medical Laboratory Examinations – Rili-BAEK”. J Lab Med 2015;39:26–69.10.1515/labmed-2014-0046Search in Google Scholar

13. Institute CaLS. Expression of measurement uncertainty in laboratory medicine; approved guideline. Wayne, PA: Clinical and Laboratory Standards Institute (CLSI), 2012.Search in Google Scholar

14. van den Berg SA, Thelen MH, Salden LP, van Thiel SW, Boonen KJ. It takes acid, rather than ice, to freeze glucose. Sci Rep 2015;5:8875.10.1038/srep08875Search in Google Scholar PubMed PubMed Central

Received: 2015-6-11
Accepted: 2015-7-22
Published Online: 2015-8-19
Published in Print: 2016-3-1

©2016 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The way of prostate cancer diagnostics
  4. Review
  5. Statistical methods used in the calculation of geriatric reference intervals: a systematic review
  6. Opinion Paper
  7. The side effects of translational omics: overtesting, overdiagnosis, overtreatment
  8. Genetics and Molecular Diagnostics
  9. Rapid detection of non-deletional mutations causing α-thalassemia by multicolor melting curve analysis
  10. General Clinical Chemistry and Laboratory Medicine
  11. Patient pools and the use of “patient means” are valuable tools in quality control illustrated by a bone-specific alkaline phosphatase assay
  12. Long-term stability of glucose: 96-h study using Terumo Glycaemia tubes
  13. Glucose is stable during prolonged storage in un-centrifuged Greiner tubes with liquid citrate buffer, but not in serum and NaF/KOx tubes
  14. Croatian laboratories have a good knowledge of the proper detection and management of hemolyzed, icteric and lipemic samples
  15. Fetal exposure to ethanol: relationship between ethyl glucuronide in maternal hair during pregnancy and ethyl glucuronide in neonatal meconium
  16. Comparing the effect of isotopically labeled or structural analog internal standards on the performance of a LC-MS/MS method to determine ciclosporin A, everolimus, sirolimus and tacrolimus in whole blood
  17. Relationship between matrix metalloproteinase-9 and oxidative stress in drug-free male schizophrenia: a case control study
  18. Comparison of functional fibrinogen (FF/CFF) and FIBTEM in surgical patients – a retrospective study
  19. Reference Values and Biological Variations
  20. Assessment of serum free light chain levels in healthy adults immediately after marathon running
  21. Pharmacokinetics of a novel dosing regimen of oral melatonin in critically ill patients
  22. Cancer Diagnostics
  23. An epidemiology-based model as a tool to monitor the outbreak of inappropriateness in tumor marker requests: a national scale study
  24. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes
  25. Infectious Diseases
  26. Comparative evaluation of the Aptima HIV-1 Quant Dx assay and COBAS TaqMan HIV-1 v2.0 assay using the Roche High Pure System for the quantification of HIV-1 RNA in plasma
  27. Evaluating the use of procalcitonin in an asymptomatic, HIV-infected antiretroviral therapy-naïve, South African cohort
  28. Diabetes
  29. Early prediction of gestational diabetes: a practical model combining clinical and biochemical markers
  30. Letters to the Editors
  31. Highly-trained dogs’ olfactory system for detecting biochemical recurrence following radical prostatectomy
  32. More on the accuracy of the Architect enzymatic assay for hemoglobin A1c and its traceability to the IFCC reference system
  33. Assessing quality from an accuracy-based HbA1c proficiency survey
  34. HbG-Honolulu interferes with some cation-exchange HPLC HbA1c assays
  35. Between analyser differences in chloride measurements and thus anion gap cause different interpretations of the acid-base balance
  36. Non-albumininuric proteinuria: a urinary tubular marker in the diagnosis of diabetic kidney disease
  37. International Normalized Ratio (INR) testing: analytical and clinical performance of four point-of-care devices versus central laboratory instrumentation analysis
  38. Genetic screening of the makorin ring finger 3 gene in girls with idiopathic central precocious puberty
  39. Practical approach for medical validation of therapeutic drug monitoring results
  40. Marked elevation of procalcitonin in a patient with a drug related infusion reaction to rituximab
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2015-0548/html
Scroll to top button