Home Environmental gradients influence geographic differentiation and low genetic diversity of morphologically similar Ulva species in the Northwest Pacific
Article
Licensed
Unlicensed Requires Authentication

Environmental gradients influence geographic differentiation and low genetic diversity of morphologically similar Ulva species in the Northwest Pacific

  • Kai-Le Zhong

    Kai-Le Zhong is a candidate Ph.D. student supervised by Dr. Juan Diego Gaitan-Espitia and Dr. Bayden Russell in the School of Biological Science at the University of Hong Kong. She previously had a three-year master’s experience from the Institute of Oceanography of the Chinese Academy of Sciences, majoring in the phylogeography of seaweed. Now, her research interest is exploring drivers and mechanisms explaining geographic patterns of species distribution of macroalgae through the integration of molecular and physiological approaches.

    ORCID logo
    , Masanori Hiraoka , Xu Gao , Bayden Russell , Zi-Min Hu , Weizhou Chen , Ju-Hyoung Kim , Norishige Yotsukura , Hikaru Endo , Naohiro Oka , Shinya Yoshikawa and Juan Diego Gaitan-Espitia

    Juan Diego Gaitan-Espitia is an evolutionary ecologist working at the SWIRE Institute of Marine Sciences, The University of Hong Kong. JDGE’s research is oriented to understanding the mechanisms underpinning phenotypic and genetic variation in natural populations, local adaptation, and phenotypic plasticity. Insights from these mechanisms help JDGE to develop better projections about population/species responses to climate change and extreme events.

    ORCID logo EMAIL logo
Published/Copyright: February 7, 2024

Abstract

Species classified in the genus Ulva are important foundational marine primary producers distributed worldwide. These species are particularly abundant and diverse through the northwest Pacific (NWP) where they experience marked latitudinal gradients of environmental heterogeneity. It is unclear, however, to what extent such dynamic conditions can modulate phenotypic and genetic patterns in these organisms, potentially reflecting the influence of historical and contemporary biotic and abiotic factors. Here, we assessed inter- and intra-specific genetic patterns of Ulva species through the NWP using plastid rbcL and tufA gene sequences. Although we initially targeted Ulva australis based on morphological identification, we recovered eight Ulva genetic entities masked by morphological similarities. Except for the Ulva linza–procera–prolifera and U. lactuca–reticulata complexes, six of these genetic entities were recovered as individual species (i.e., U. australis, U. ohnoi, U. californica, U. compressa, U. lacinulata, and U. arasakii), and showed biogeographic patterns likely explained by clines in sea surface temperature and ocean current dispersal. At intra-specific level, all the genetic entities showed low genetic variation and divergence based on rbcL (0–0.3 %) and tuf A (0–0.9 %) data. Our results provide insights regarding intra- and inter-specific genetic patterns characterizing morphologically similar Ulva species through the NWP. However, further studies are needed to understand the mechanisms underpinning such patterns and the associated ecological and evolutionary implications.


Corresponding author: Juan Diego Gaitan-Espitia, The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China, E-mail:

Award Identifier / Grant number: ECS 27124318

Funding source: Dalian Ocean University

Award Identifier / Grant number: Unassigned

Funding source: Yantai University

Award Identifier / Grant number: Unassigned

Funding source: Ningbo University

Award Identifier / Grant number: Unassigned

Funding source: Jimei University

Award Identifier / Grant number: Unassigned

Funding source: Mie University

Award Identifier / Grant number: Unassigned

About the authors

Kai-Le Zhong

Kai-Le Zhong is a candidate Ph.D. student supervised by Dr. Juan Diego Gaitan-Espitia and Dr. Bayden Russell in the School of Biological Science at the University of Hong Kong. She previously had a three-year master’s experience from the Institute of Oceanography of the Chinese Academy of Sciences, majoring in the phylogeography of seaweed. Now, her research interest is exploring drivers and mechanisms explaining geographic patterns of species distribution of macroalgae through the integration of molecular and physiological approaches.

Juan Diego Gaitan-Espitia

Juan Diego Gaitan-Espitia is an evolutionary ecologist working at the SWIRE Institute of Marine Sciences, The University of Hong Kong. JDGE’s research is oriented to understanding the mechanisms underpinning phenotypic and genetic variation in natural populations, local adaptation, and phenotypic plasticity. Insights from these mechanisms help JDGE to develop better projections about population/species responses to climate change and extreme events.

Acknowledgments

We are grateful to Xiaoli Li (Dalian Ocean University), Ronglian Xing (Yantai University), Qijun Luo (Ningbo University), Dehua Ji (Jimei University), Kurashima Akira (Mie University) and all the co-authors who help to collect the Ulva samples.

  1. Research ethics: Not applicable. No animal or human material was involved in this study.

  2. Author contributions: JDGE and KZ conceived the idea and designed the work. KZ developed DNA extractions, data analysis and led the manuscript writing with feedback from JDGE. MH detected the release of zoids. All authors were involved in sample collection and provided feedback on the final version of this work. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: JDGE and KZ were supported by the Research Grants Council (ECS 27124318) of Hong Kong. Z-MH was supported by National Natural Science Foundation of China (31971395).

  5. Data availability: The raw data can be obtained on request from the corresponding author or GenBank under accession numbers OR004473-OR004487 (rbcL) and OR004488-OR004502 (tufA).

References

Balar, N.B. and Mantri, V.A. (2020). Insights into life cycle patterns, spore formation, induction of reproduction, biochemical and molecular aspects of sporulation in green algal genus Ulva: implications for commercial cultivation. J. Appl. Phycol. 32: 473–484, https://doi.org/10.1007/s10811-019-01959-7.Search in Google Scholar

Bandelt, H.J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37–48, https://doi.org/10.1093/oxfordjournals.molbev.a026036.Search in Google Scholar PubMed

Blomster, J., Maggs, C.A., and Stanhope, M.J. (1998). Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J. Phycol. 34: 319–340, https://doi.org/10.1046/j.1529-8817.1998.340319.x.Search in Google Scholar

Blomster, J., Maggs, C.A., and Stanhope, M.J. (1999). Extensive intraspecific morphological variation in Enteromorpha muscoides (Chlorophyta) revealed by molecular analysis. J. Phycol. 35: 575–586, https://doi.org/10.1046/j.1529-8817.1999.3530575.x.Search in Google Scholar

Boo, G.H., Qiu, Y.X., Kim, J.Y., Ang, P.O.Jr, Bosch, S., De Clerck, O., He, P., Higa, A., Huang, B., Kogame, K., et al.. (2019). Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia. J. Phycol. 55: 1319–1334, https://doi.org/10.1111/jpy.12910.Search in Google Scholar PubMed

Boykin, L.M., Armstrong, K.F., Kubatko, L., and De Barro, P. (2012). Species delimitation and global biosecurity. Evol. Bioinform. 8: EBO-S8532, https://doi.org/10.4137/ebo.s8532.Search in Google Scholar

Caley, M.J., Carr, M.H., Hixon, M.A., Hughes, T.P., Jones, G.P., and Menge, B.A. (1996). Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Evol. Syst. 27: 477–500, https://doi.org/10.1146/annurev.ecolsys.27.1.477.Search in Google Scholar

Chan, S.W., Caley, C.C., Chirapart, A., Gerung, G., Tharith, C., and Ang, P. (2013). Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation. PloS One 8: e77662, https://doi.org/10.1371/journal.pone.0077662.Search in Google Scholar PubMed PubMed Central

Cheang, C.C., Chu, K.H., and Ang, J.P.O. (2010). Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol. Ecol. 19: 2933–2948, https://doi.org/10.1111/j.1365-294x.2010.04685.x.Search in Google Scholar PubMed

Cohen, R.A. and Fong, P. (2006). Using opportunistic green macroalgae as indicators of nitrogen supply and sources to estuaries. Ecol. Appl. 16: 1405–1420, https://doi.org/10.1890/1051-0761(2006)016[1405:uogmai]2.0.co;2.10.1890/1051-0761(2006)016[1405:UOGMAI]2.0.CO;2Search in Google Scholar

Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., and Likens, G.E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015, https://doi.org/10.1126/science.1167755.Search in Google Scholar PubMed

Cui, J., Monotilla, A.P., Zhu, W., Takano, Y., Shimada, S., Ichihara, K., Matsui, T., He, P., and Hiraoka, M. (2018). Taxonomic reassessment of Ulva prolifera (Ulvophyceae, Chlorophyta) based on specimens from the type locality and Yellow Sea green tides. Phycologia 57: 692–704, https://doi.org/10.2216/17-139.1.Search in Google Scholar

Dan, A., Hiraoka, M., Ohno, M., and Critchley, A.T. (2002). Observations on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoid formation in the green alga Enteromorpha prolifera (Müller) J. Agardh (Chlorophyta, Ulvales). Fish. Sci. 68: 1182–1188, https://doi.org/10.1046/j.1444-2906.2002.00553.x.Search in Google Scholar

Dartois, M., Pante, E., Viricel, A., Becquet, V., and Sauriau, P.G. (2021). Molecular genetic diversity of seaweeds morphologically related to Ulva rigida at three sites along the French Atlantic coast. PeerJ 9: e11966, https://doi.org/10.7717/peerj.11966.Search in Google Scholar PubMed PubMed Central

Diehl, N., Steiner, N., Bischof, K., Karsten, U., and Heesch, S. (2023). Exploring intraspecific variability–biochemical and morphological traits of the sugar kelp Saccharina latissima along latitudinal and salinity gradients in Europe. Front. Mar. Sci. 10: 995982, https://doi.org/10.3389/fmars.2023.995982.Search in Google Scholar

Ding, L.P. (2013). Flora algarum marinarum (Tomus iv: Chlorophyta). Science Press, Beijing.Search in Google Scholar

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. 1: 117693430500100003, https://doi.org/10.1177/117693430500100003.Search in Google Scholar

Fort, A., McHale, M., Cascella, K., Potin, P., Usadel, B., Guiry, M.D., and Sulpice, R. (2021). Foliose Ulva species show considerable inter‐specific genetic diversity, low intra‐specific genetic variation, and the rare occurrence of inter‐specific hybrids in the wild. J. Phycol. 57: 219–233, https://doi.org/10.1111/jpy.13079.Search in Google Scholar PubMed PubMed Central

Fort, A., McHale, M., Cascella, K., Potin, P., Perrineau, M.M., Kerrison, P.D., da Costa, E., Calado, R., Domingues, M.d.R., Costa Azevedo, I., et al.. (2022). Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution. Mol. Ecol. Resour. 22: 86–101, https://doi.org/10.1111/1755-0998.13453.Search in Google Scholar PubMed

Gao, G., Zhong, Z., Zhou, X., and Xu, J. (2016). Changes in morphological plasticity of Ulva prolifera under different environmental conditions: a laboratory experiment. Harmful Algae 59: 51–58, https://doi.org/10.1016/j.hal.2016.09.004.Search in Google Scholar PubMed

Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704, https://doi.org/10.1080/10635150390235520.Search in Google Scholar PubMed

Guiry, M.D. and Guiry, G.M. (2023). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway, Available at: <http://www.algaebase.org>.Search in Google Scholar

Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT/7. Nucleic Acids Symp. Ser. 41: 95–98.Search in Google Scholar

Hanyuda, T., Heesch, S., Nelson, W., Sutherland, J., Arai, S., Boo, S.M., and Kawai, H. (2016). Genetic diversity and biogeography of native and introduced populations of Ulva pertusa (Ulvales, C hlorophyta). Phycol. Res. 64: 102–109, https://doi.org/10.1111/pre.12123.Search in Google Scholar

Hayden, H.S., Blomster, J., Maggs, C.A., Silva, P.C., Stanhope, M.J., and Waaland, J.R. (2003). Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38: 277–294, https://doi.org/10.1080/1364253031000136321.Search in Google Scholar

Hiraoka, M., Shimada, S., Uenosono, M., and Masuda, M. (2004). A new green‐tide‐forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol. Res. 52: 17–29, https://doi.org/10.1111/j.1440-1835.2003.00321.x.Search in Google Scholar

Hiraoka, M., Ichihara, K., Zhu, W., Ma, J., and Shimada, S. (2011). Culture and hybridization experiments on an Ulva clade including the Qingdao strain blooming in the Yellow Sea. PLoS One 6: e19371, https://doi.org/10.1371/journal.pone.0019371.Search in Google Scholar PubMed PubMed Central

Hiraoka, M., Ichihara, K., Zhu, W., Shimada, S., Oka, N., Cui, J., Tsubaki, S., and He, P. (2017). Examination of species delimitation of ambiguous DNA-based Ulva (Ulvophyceae, Chlorophyta) clades by culturing and hybridisation. Phycologia 56: 517–532, https://doi.org/10.2216/16-109.1.Search in Google Scholar

Hu, Z.M. and Fraser, C. (Eds.) (2016). Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Springer, Netherlands.10.1007/978-94-017-7534-2Search in Google Scholar

Hughey, J.R., Maggs, C.A., Mineur, F., Jarvis, C., Miller, K.A., Shabaka, S.H., and Gabrielson, P.W. (2019). Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. J. Phycol. 55: 503–508, https://doi.org/10.1111/jpy.12860.Search in Google Scholar PubMed

Hughey, J.R., Gabrielson, P.W., Maggs, C.A., Mineur, F., and Miller, K.A. (2020). Taxonomic revisions based on genetic analysis of type specimens of Ulva conglobata, U. laetevirens, U. pertusa and U. spathulata (Ulvales, Chlorophyta). Phycol. Res. 69: 148–153, https://doi.org/10.1111/pre.12450.Search in Google Scholar

Hughey, J.R., Gabrielson, P.W., Maggs, C.A., and Mineur, F. (2022). Genomic analysis of the lectotype specimens of European Ulva rigida and Ulva lacinulata (Ulvaceae, Chlorophyta) reveals the ongoing misapplication of names. Eur. J. Phycol. 57: 143–153, https://doi.org/10.1080/09670262.2021.1914862.Search in Google Scholar

Huo, Y., Zhang, J., Chen, L., Hu, M., Yu, K., Chen, Q., He, Q., and He, P. (2013). Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol. Oceanogr. 58: 2206–2218, https://doi.org/10.4319/lo.2013.58.6.2206.Search in Google Scholar

Kakinuma, M., Coury, D.A., Kuno, Y., Itoh, S., Kozawa, Y., Inagaki, E., Yoshiura, Y., and Amano, H. (2006). Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar. Biol. 149: 97–106, https://doi.org/10.1007/s00227-005-0215-y.Search in Google Scholar

Kang, J.H., Jang, J.E., Kim, J.H., Byeon, S., Kim, S., Choi, S.K., Kang, Y.H., Park, S.R., and Lee, H.J. (2019). Species composition, diversity, and distribution of the genus Ulva along the coast of Jeju Island, Korea based on molecular phylogenetic analysis. PloS One 14: e0219958, https://doi.org/10.1371/journal.pone.0219958.Search in Google Scholar PubMed PubMed Central

Kim, K.Y., Choi, T.S., Kim, J.H., Han, T., Shin, H.W., and Garbary, D.J. (2004). Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43: 483–492, https://doi.org/10.2216/i0031-8884-43-4-483.1.Search in Google Scholar

Kostamo, K., Blomster, J., Korpelainen, H., Kelly, J., Maggs, C.A., and Mineur, F. (2008). New microsatellite markers for Ulva intestinalis (Chlorophyta) and the transferability of markers across species of Ulvaceae. Phycologia 47: 580–587, https://doi.org/10.2216/08-16.1.Search in Google Scholar

Kraan, S., Verges Tramullas, A., and Guiry, M.D. (2000). The edible brown seaweed Alaria esculenta (Phaeophyceae, Laminariales): hybridization, growth and genetic comparisons of six Irish populations. J. Appl. Phycol. 12: 577–583.Search in Google Scholar

Krupnik, N., Paz, G.U.Y., Dourk, J., Lewinsohn, E., Israel, A., Carmel, N., Mineur, F., and Maggs, C.A. (2018). Native, invasive and cryptogenic Ulva species from the Israeli Mediterranean Sea: risk and potential. Mediterr. Mar. Sci. 19: 132–146, https://doi.org/10.12681/mms.2104.Search in Google Scholar

Kwon, H.K., Kang, H., Oh, Y.H., Park, S.R., and Kim, G. (2017). Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea. Sci. Rep. 7: 6325, https://doi.org/10.1038/s41598-017-06711-0.Search in Google Scholar PubMed PubMed Central

Lee, H.W. and Kim, M.S. (2015). Species delimitation in the green algal genus Codium (Bryopsidales) from Korea using DNA barcoding. Acta Oceanol. Sin. 34: 114–124, https://doi.org/10.1007/s13131-015-0651-6.Search in Google Scholar

Lee, H.W., Kang, J.C., Kim, M.S., Lee, H.W., Kang, J.C., and Kim, M.S. (2019). Taxonomy of Ulva causing blooms from Jeju Island, Korea with new species, U. pseudo-ohnoi sp. nov. (Ulvales, Chlorophyta). Algae 34: 253–266, https://doi.org/10.4490/algae.2019.34.12.9.Search in Google Scholar

Lee, S.H., Kang, P.J., and Nam, K.W. (2014). New record of two marine Ulvalean species (Chlorophyta) in Korea. J. Ecol. Environ. 37: 379–385, https://doi.org/10.5141/ecoenv.2014.039.Search in Google Scholar

Liu, F., Melton, J.T.III., and Bi, Y. (2017). Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae. J. Phycol. 53: 1010–1019, https://doi.org/10.1111/jpy.12561.Search in Google Scholar PubMed

Liu, J., Zhan, D., Zhang, R., Zeng, L., Wang, G., and Hu, Z.M. (2018). AFLP analysis revealed a north to south genetic break in the brown alga Sargassum thunbergii along the coast of China. J. Appl. Phycol. 30: 2697–2705, https://doi.org/10.1007/s10811-018-1417-2.Search in Google Scholar

Liu, Q., Yu, R.C., Yan, T., Zhang, Q.C., and Zhou, M.J. (2015). Laboratory study on the life history of bloom-forming Ulva prolifera in the Yellow Sea. Estuar. Coast. Shelf Sci. 163: 82–88, https://doi.org/10.1016/j.ecss.2014.08.011.Search in Google Scholar

Masakiyo, Y. and Shimada, S. (2014). Species diversity of the genus Ulva (Ulvophyceae, Chlorophyta) in Japanese waters, with special reference to Ulva tepida Masakiyo et S. Shimada sp. nov. Bull. Nat. Mus. Nat. Sci. B, Bot. 40: 1–13.Search in Google Scholar

Masters, B.C., Fan, V., and Ross, H.A. (2011). Species delimitation–a geneious plugin for the exploration of species boundaries. Mol. Ecol. Resour. 11: 154–157, https://doi.org/10.1111/j.1755-0998.2010.02896.x.Search in Google Scholar PubMed

Melton, J.T., Collado-Vides, L., and Lopez-Bautista, J.M. (2016). Molecular identification and nutrient analysis of the green tide species Ulva ohnoi M. Hiraoka and S. Shimada, 2004 (Ulvophyceae, Chlorophyta), a new report and likely nonnative species in the Gulf of Mexico and Atlantic Florida, USA. Aquat. Invasions 11: 225–237.10.3391/ai.2016.11.3.01Search in Google Scholar

Monotilla, A.P., Nishimura, T., Adachi, M., Tanii, Y., Largo, D.B., and Hiraoka, M. (2018). Examination of prezygotic and postzygotic isolating barriers in tropical Ulva (Ulvophyceae, Chlorophyta): evidence for ongoing speciation. J. Phycol. 54: 539–549, https://doi.org/10.1111/jpy.12755.Search in Google Scholar PubMed

Ng, P.K., Chiou, Y.S., Liu, L.C., Sun, Z., Shimabukuro, H., and Lin, S.M. (2019). Phylogeography and genetic connectivity of the marine macro‐alga Sargassum ilicifolium (Phaeophyceae, Ochrophyta) in the northwestern Pacific1. J. Phycol. 55: 7–24, https://doi.org/10.1111/jpy.12806.Search in Google Scholar PubMed

Ni, G., Li, Q.I., Kong, L., and Yu, H. (2014). Comparative phylogeography in marginal seas of the northwestern Pacific. Mol. Ecol. 23: 534–548, https://doi.org/10.1111/mec.12620.Search in Google Scholar PubMed

Oliveira, M.G.T.D., Pereira, S.M.B., Benko-Iseppon, A.M., Balbino, V.Q., Silva Junior, W.J.D., Ximenes, C.F., and Cassano, V. (2021). First molecular analysis of the genus Bryopsis (Bryopsidales, Chlorophyta) from Brazil, with an emphasis on the Pernambuco coast. Acta. Bot. Bras. 35: 161–178, https://doi.org/10.1590/0102-33062020abb0154.Search in Google Scholar

Padilla‐Gamiño, J.L., Gaitán‐Espitia, J.D., Kelly, M.W., and Hofmann, G.E. (2016). Physiological plasticity and local adaptation to elevated pCO 2 in calcareous algae: an ontogenetic and geographic approach. Evol. Appl. 9: 1043–1053, https://doi.org/10.1111/eva.12411.Search in Google Scholar PubMed PubMed Central

Perrin, C., Daguin, C., Van De Vliet, M., Engel, C.R., Pearson, G.A., and Serrão, E.A. (2007). Implications of mating system for genetic diversity of sister algal species: Fucus spiralis and Fucus vesiculosus (Heterokontophyta, Phaeophyceae). Eur. J. Phycol. 42: 219–230, https://doi.org/10.1080/09670260701336554.Search in Google Scholar

Posada, D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256, https://doi.org/10.1093/molbev/msn083.Search in Google Scholar PubMed

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G.J.M.E. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21: 1864–1877, https://doi.org/10.1111/j.1365-294x.2011.05239.x.Search in Google Scholar PubMed

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539–542, https://doi.org/10.1093/sysbio/sys029.Search in Google Scholar PubMed PubMed Central

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., and Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34: 3299–3302, https://doi.org/10.1093/molbev/msx248.Search in Google Scholar PubMed

Saunders, G.W. and Kucera, H. (2010). An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algol 31: 487–528.Search in Google Scholar

Sauriau, P.G., Dartois, M., Becquet, V., Aubert, F., Huet, V., Bréret, M., Viricel, A., and Pante, E. (2021). Multiple genetic marker analysis challenges the introduction history of Ulva australis (Ulvales, Chlorophyta) on French coasts. Eur. J. Phycol. 56: 455–467, https://doi.org/10.1080/09670262.2021.1876249.Search in Google Scholar

Selkoe, K.A., Aloia, C.C., Crandall, E.D., Iacchei, M., Liggins, L., Puritz, J.B., Von der Heyden, S., and Toonen, R.J. (2016). A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554: 1–19, https://doi.org/10.3354/meps11792.Search in Google Scholar

Shimada, S. (2004). Phylogenetic studies in the genus Codium (Chlorophyta) from Japan. Jpn. J. Phycol. 52: 137–141.Search in Google Scholar

Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M.A.X., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., et al.. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583, https://doi.org/10.1641/b570707.Search in Google Scholar

Steinhagen, S., Barco, A., Wichard, T., and Weinberger, F. (2019). Conspecificity of the model organism Ulva mutabilis and Ulva compressa (Ulvophyceae, Chlorophyta). J. Phycol. 55: 25–36, https://doi.org/10.1111/jpy.12804.Search in Google Scholar PubMed

Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022–3027, https://doi.org/10.1093/molbev/msab120.Search in Google Scholar PubMed PubMed Central

Tan, I.H., Blomster, J., Hansen, G., Leskinen, E., Maggs, C.A., Mann, D.G., Sluiman, H.J., and Stanhope, M.J. (1999). Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 16: 1011–1018, https://doi.org/10.1093/oxfordjournals.molbev.a026190.Search in Google Scholar PubMed

Voris, H.K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27: 1153–1167, https://doi.org/10.1046/j.1365-2699.2000.00489.x.Search in Google Scholar

Wang, B.D., Wang, X.L., and Zhan, R. (2003). Nutrient conditions in the Yellow Sea and the East China sea. Estuar. Coast. Shelf Sci. 58: 127–136, https://doi.org/10.1016/s0272-7714(03)00067-2.Search in Google Scholar

Wang, P.X. (1999). Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar. Geol. 156: 5–39, https://doi.org/10.1016/s0025-3227(98)00172-8.Search in Google Scholar

Wei, X., Liu, W., Lin, X., Liu, Q., and Jiang, P. (2022). First record of Ulva californica in the mainland of China: a single alien parthenogenetic population in discontinuous distribution. J. Oceanol. Limnol. 40: 2343–2353, https://doi.org/10.1007/s00343-022-1392-y.Search in Google Scholar

Ximenes, C.F., Oliveira-Carvalho, M.D.F., Bandeira-Pedrosa, M.E., and Cassano, V. (2019). Updates on Section pseudo-opuntia of Halimeda: phylogenetic analyses of H. soniae sp. nov. (Bryopsidales, Chlorophyta) along the Brazilian coast. Bot. Mar. 62: 327–336, https://doi.org/10.1515/bot-2018-0094.Search in Google Scholar

Xu, X. and Oda, M. (1999). Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar. Geol. 156: 285–304, https://doi.org/10.1016/s0025-3227(98)00183-2.Search in Google Scholar

Yoshida, G., Uchimura, M., and Hiraoka, M. (2015). Persistent occurrence of floating Ulva green tide in Hiroshima Bay, Japan: seasonal succession and growth patterns of Ulva pertusa and Ulva spp.(Chlorophyta, Ulvales). Hydrobiologia 758: 223–233, https://doi.org/10.1007/s10750-015-2292-3.Search in Google Scholar

Zanolla, M., Carmona, R., Kawai, H., Stengel, D.B., and Altamirano, M. (2019). Role of thermal photosynthetic plasticity in the dispersal and settlement of two global green tide formers: Ulva pertusa and. U. ohnoi. Mar. Biol. 166: 123, https://doi.org/10.1007/s00227-019-3578-1.Search in Google Scholar

Zhang, X., Xu, D., Mao, Y., Li, Y., Xue, S., Zou, J., Ye, N., Liang, C., Zhuang, Z., Wang, Q., et al.. (2011). Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnol. Oceanogr. 56: 233–242, https://doi.org/10.4319/lo.2011.56.1.0233.Search in Google Scholar

Zhao, X., Cui, J., Zhang, J., Shi, J., Kang, X., Liu, J., Wen, Q., and He, P. (2019). Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis. Mar. Pollut. Bull. 146: 584–590, https://doi.org/10.1016/j.marpolbul.2019.07.018.Search in Google Scholar PubMed

Zhong, K.L., Song, X.H., Choi, H.G., Satoshi, S., Weinberger, F., Draisma, S.G., Duan, D.L., and Hu, Z.M. (2020). MtDNA-based phylogeography of the red alga Agarophyton vermiculophyllum (Gigartinales, Rhodophyta) in the native northwest Pacific. Front. Mar. Sci. 7: 366, https://doi.org/10.3389/fmars.2020.00366.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/bot-2023-0073).


Received: 2023-08-30
Accepted: 2023-12-22
Published Online: 2024-02-07
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2023-0073/html
Scroll to top button