Home Surf-diatoms from sandy beaches on the Eastern Coast of South America (Brazil): the identification of Anaulus Ehrenberg and Asterionellopsis Round
Article
Licensed
Unlicensed Requires Authentication

Surf-diatoms from sandy beaches on the Eastern Coast of South America (Brazil): the identification of Anaulus Ehrenberg and Asterionellopsis Round

  • Andréa de Oliveira da Rocha Franco

    Andréa de Oliveira da Rocha Franco is a PhD candidate in Biological Oceanography at Universidade Federal do Rio Grande in Brazil. Her research expertise is ecology and taxonomy (morphological and molecular data) of marine phytoplankton, currently focusing on plankton communities from surf zones associated to events of diatom accumulations.

    ORCID logo EMAIL logo
    , Matt Peter Ashworth

    Matt Peter Ashworth earned his PhD in Plant Biology from the University of Texas at Austin and is currently employed as a research associate at the UTEX Culture Collection of Algae at the University of Texas in the United States. His research is focused on the evolution, systematics and mechanisms of diversification in diatoms, using morphological, molecular and natural history data.

    , Debbie Du Preez

    Debbie Du Preez is a PhD candidate in Botany at Nelson Mandela University, School of Enviromental Sciences, Deparment of Botany, Gqeberha, South Africa. Her research expertise is in the field of marine botany focusing on surf-zone diatoms along the South African coastline.

    , Eileen Campbell

    Eileen Campbell is an Associate Professor at Nelson Mandela University, School of Enviromental Sciences, Deparment of Botany, Gqeberha, South Africa. She is one of the leaders in the biology of surf-diatoms in general and Anaulus australis in particular. She has worked on most temperate surf-diatom beaches on four continents.

    , Rodrigo Maggioni , Schonna R. Manning and Clarisse Odebrecht

    Clarisse Odebrecht has a PhD in Natural Sciences/Biological Oceanography and is Volunteer Professor at the Post Graduation Programme in Biological Oceanography. Her research expertise is within the field of marine ecology and biological oceanography focusing on phytoplankton taxonomy and ecology in estuaries and coastal environments.

    ORCID logo
Published/Copyright: August 21, 2023

Abstract

“Surf diatoms” can form high biomass in the surf zone of sandy beaches around the world, Asterionellopsis and Anaulus being the main genera of this group in Brazil. Asterionellopsis glacialis was considered a cosmopolitan species, and taxonomic studies using molecular and morphological tools showed that A. glacialis is a complex with cryptic and semicryptic species. So, it would be plausible to suppose that Anaulus australis, another surf zone patch-forming diatom with wide latitudinal occurrence could also be part of a species complex. We collected and identified Anaulus and Asterionellopsis strains from tropical, subtropical and warm temperate sandy beaches on the east coast of South America (Brazil) based on genetic divergence, phylogeny, single-locus automated species delimitation methods (both genera), and frustule ultrastructure (Anaulus). Anaulus and Asterionellopsis showed contrasting diversity patterns and spatial distribution: a single species of Anaulus australis was registered in tropical and subtropical beaches, while at least three species of Asterionellopsis: A. tropicalis, A. thurstonii and A. guyunusae were observed at different latitudes, indicating that Asterionellopsis species have distinct ecological requirements. Asterionellopsis thurstonii was previously reported in Europe and it is documented here for the first time in the Southern Hemisphere. The different diversity patterns between these two surf diatom genera suggest that they are likely to have distinct ages, and dispersion and/or speciation processes.


Corresponding author: Andrea de Oliveira da Rocha Franco, Programa de Pós-Graduação em Oceanografia Biológica, PPGOB, Institute of Oceanography, Federal University of Rio Grande – FURG, Av. Italia, km 8, CEP 96203-900, Rio Grande, Brazil, E-mail:

Funding source: Brazilian Long-Term Ecological Research: CNPq/CAPES/FAPERGS/BC – Fundo Newton/PELD

Award Identifier / Grant number: 15/2016.

Award Identifier / Grant number: 203883/2017-9 

Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)

Award Identifier / Grant number: Finance Code 001

About the authors

Andréa de Oliveira da Rocha Franco

Andréa de Oliveira da Rocha Franco is a PhD candidate in Biological Oceanography at Universidade Federal do Rio Grande in Brazil. Her research expertise is ecology and taxonomy (morphological and molecular data) of marine phytoplankton, currently focusing on plankton communities from surf zones associated to events of diatom accumulations.

Matt Peter Ashworth

Matt Peter Ashworth earned his PhD in Plant Biology from the University of Texas at Austin and is currently employed as a research associate at the UTEX Culture Collection of Algae at the University of Texas in the United States. His research is focused on the evolution, systematics and mechanisms of diversification in diatoms, using morphological, molecular and natural history data.

Debbie Du Preez

Debbie Du Preez is a PhD candidate in Botany at Nelson Mandela University, School of Enviromental Sciences, Deparment of Botany, Gqeberha, South Africa. Her research expertise is in the field of marine botany focusing on surf-zone diatoms along the South African coastline.

Eileen Campbell

Eileen Campbell is an Associate Professor at Nelson Mandela University, School of Enviromental Sciences, Deparment of Botany, Gqeberha, South Africa. She is one of the leaders in the biology of surf-diatoms in general and Anaulus australis in particular. She has worked on most temperate surf-diatom beaches on four continents.

Clarisse Odebrecht

Clarisse Odebrecht has a PhD in Natural Sciences/Biological Oceanography and is Volunteer Professor at the Post Graduation Programme in Biological Oceanography. Her research expertise is within the field of marine ecology and biological oceanography focusing on phytoplankton taxonomy and ecology in estuaries and coastal environments.

Acknowledgments

We thank the Plankton Laboratory team of LABOMAR of the Federal University of Ceará and Prof. Dr. Luiz L. Mafra Jr. of Federal University of Paraná for providing diatom samples for isolation. The Banco de Microrganismos Aidar & Kutner (BMA&K) of University of São Paulo for providing the strain from Baía do Trapandé, Cananéia, São Paulo. We would also like to thank the reviewers for their detailed analysis which improved the manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. A.O.R. Franco: original concept, drafting and editing manuscript, culturing, acquiring molecular and morphological electron microscopy data, phylogenetic and morphological analysis; M.P. Ashworth: drafting and editing manuscript, culturing, acquiring molecular data; D. Du Preez: editing manuscript, environmental sampling, acquiring molecular data; E. Campbell: editing manuscript, environmental sampling, morphological electron microscopy data; R. Maggioni: editing manuscript, acquiring molecular data, phylogenetic analysis; S.R. Manning: editing manuscript, culturing, acquiring molecular data; C. Odebrecht: original concept, drafting and editing manuscript, environmental sampling for culture.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: This work was supported by Brazilian funding agencies: CNPq Proc. 203883/2017-9; the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; Brazilian Long-Term Ecological Research: CNPq/CAPES/FAPERGS/BC – Fundo Newton/PELD nº 15/2016.

  5. Data availability: The alignments and bayesian phylogenetic trees used are available in FigShare: https://doi.org/10.6084/m9.figshare.20372232.v2.

References

Abreu, P.C.O.V., Graneli, H.W., and Odebrecht, C. (1995). Produção fitoplanctônica e bacteriana na região da pluma estuarina da Lagoa dos Patos, RS, Brasil. Atlântica 17: 35–52.Search in Google Scholar

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19: 716–723, https://doi.org/10.1109/tac.1974.1100705.Search in Google Scholar

Al-Kandari, M., Al-Yamani, F. and Al-Rifaie, K. (2009). Phytoplankton atlas of Kuwait’s waters. Kuwait Institute for Scientific Research. Lucky Printing Press, Kuwait.Search in Google Scholar

Amato, A., Kooistra, W.H.C.F., Ghiron, J.H.L., Mann, D.G., Pröschold, T., and Montresor, M. (2007). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158: 193–207, https://doi.org/10.1016/j.protis.2006.10.001.Search in Google Scholar PubMed

Andersen, R.A. (2005). Algal culturing techniques. Elsevier Academic Press, Amsterdam.Search in Google Scholar

Ashworth, M., Nakov, T., and Theriot, E.C. (2013). Revisiting Ross and Sims (1971): toward a molecular phylogeny of the Biddulphiaceae and Eupodiscaceae (Bacillariophyceae). J. Phycol. 49: 1207–1222, https://doi.org/10.1111/jpy.12131.Search in Google Scholar PubMed

Auinger, B.M., Pfandl, K., and Boenigk, J. (2008). Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol’s iodine solution: combining microscopic analysis with single–cell PCR. Appl. Environ. Microbiol. 74: 2505–2510, https://doi.org/10.1128/aem.01803-07.Search in Google Scholar PubMed PubMed Central

Ballesteros, I., Castillejo, P., Haro, A.P., Montes, C.C., Heinrich, C., and Lobo, E.A. (2020). Genetic barcoding of Ecuadorian epilithic diatom species suitable as water quality bioindicators. C. R. Biol. 343: 41–52, https://doi.org/10.5802/crbiol.2.Search in Google Scholar PubMed

Battarbee, R.W. (1986). Diatom analyses. In: Berglund, B.E. (Ed.), Handbook of Holocene palaeoecology and paleohydrology. Wiley, Chichester, pp. 527–570.Search in Google Scholar

Campbell, E.E. (1996). The global distribution of surf diatom accumulations. Rev. Chil. de Hist. Nat. 69: 495–501.Search in Google Scholar

Chamnansinp, A., Li, Y., Lundholm, N., and Moestrup, Ø. (2013). Global diversity of two widespread, colony–forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov. J. Phycol. 49: 1128–1141, https://doi.org/10.1111/jpy.12121.Search in Google Scholar PubMed

Cox, E. (2014). Diatom identification in the face of changing species concepts and evidence of phenotypic plasticity. J. Micropalaeontol. 33: 111–120, https://doi.org/10.1144/jmpaleo2014-014.Search in Google Scholar

Dąbek, P., Ashworth, M.P., Gorecka, E., Krzywda, M., Bornman, T.G., Sato, S., and Witkowski, A. (2019). Toward a multigene phylogeny of the Cymatosiraceae (Bacillariophyta, Mediophyceae) II: morphological and molecular insights into the taxonomy of the forgotten species Campylosira africana and of Extubocellulus, with a description of two new taxa. J. Phycol. 55: 425–441, https://doi.org/10.1111/jpy.12831.Search in Google Scholar PubMed

Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 77, https://doi.org/10.1038/nmeth.2109.Search in Google Scholar PubMed PubMed Central

Drebes, G. and Schulz, D. (1989). Anaulus australis sp. nov. (Centrales, Bacillariophyceae), a new marine surf zone diatom, previously assigned to A. birostratus (Grunow) Grunow. Bot. Mar. 32: 53–64, https://doi.org/10.1515/botm.1989.32.1.53.Search in Google Scholar

Du Preez, D.P. (2017). Phylogeny and phylogeography of dominant South African surf diatoms, Master dissertation. Port Elizabeth, Nelson Mandela University, Available at: <https://vital.seals.ac.za/vital/access/manager/Repository/vital:30778?site_name=Global> (Accessed May 2022).Search in Google Scholar

Dutra, D.B. and Garcia, M. (2016). Diatomáceas fitoplanctônicas da Praia do Gi, Laguna, Santa Catarina, Brasil. Acta Biológica Catarinense 3: 102–120, https://doi.org/10.21726/abc.v3i2.246.Search in Google Scholar

Evans, M.K., Wortley, A.H., and Mann, G.D. (2007). An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158: 349–364, https://doi.org/10.1016/j.protis.2007.04.001.Search in Google Scholar PubMed

Franco, A.O.R., They, N.H., Canani, L.G.C., Maggioni, R., and Odebrecht, C. (2016). Asterionellopsis tropicalis (Bacillariophyceae): a new tropical species found in diatom accumulations. J. Phycol. 52: 888–895, https://doi.org/10.1111/jpy.12435.Search in Google Scholar PubMed

Franco, A.O.R., Soares, M.S., and Moreira, M.O.P. (2018). Diatom accumulations on a tropical meso-tidal beach: environmental drivers on phytoplankton biomass. Estuar. Coast. Shelf Sci. 207: 414–421, https://doi.org/10.1016/j.ecss.2017.07.020.Search in Google Scholar

Franco, A.O.R., Ashworth, M.P., and Odebrecht, C. (2023). Comparison between p-distance and single-locus species delimitation models for delineating reproductively tested strains of pennate diatoms (Bacillariophyceae) using cox1, rbcL and ITS. J. Eukaryot. Microbiol. e12986, https://doi.org/10.1111/jeu.12986.Search in Google Scholar PubMed

Gaonkar, C.C., Kooistra, W.H.C.F., Lange, C.B., Montresor, M., and Sarno, D. (2017). Two new species in the Chaetoceros socialis complex (Bacillariophyta): C. sporotruncatus and C. dichatoensis, and characterization of its relatives, C. radicans and C. cinctus. J. Phycol. 53: 889–907, https://doi.org/10.1111/jpy.12554.Search in Google Scholar PubMed

Gaonkar, C.C., Piredda, R., Minucci, C., Mann, D.G., Montresor, M., Sarno, and D., and Kooistra, W.H.C.F. (2018). Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS One 13: e0208929, https://doi.org/10.1371/journal.pone.0208929.Search in Google Scholar PubMed PubMed Central

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W.L., and Chanley, M.H. (Eds.), Culture of marine invertebrate animals. Springer, New York, pp. 29–60.10.1007/978-1-4615-8714-9_3Search in Google Scholar

Hoppenrath, M., Elbrächter, M., and Drebes, G. (2009). Marine phytoplankton: selected microphytoplankton species from the North Sea around Helgoland and Sylt. E. Schweizerbart’sche Verlagbuchhandlung, Stuttgart, Germany.Search in Google Scholar

Iwatani, N., Murakami, S., and Suzuki, Y. (2005). A sequencing protocol of some DNA regions in nuclear, chloroplastic and mitochondrial genomes with an individual colony of Thalassiosira nordenskioeldii Cleve (Bacillariophyceae). Polar Biosci 18: 35–45.Search in Google Scholar

Kaczmarska, I., Beaton, M., Benoit, A.C., and Medlin, L.K. (2005). Molecular phylogeny of selected member of the order Thalassiosirales (Bacillariophyta) and evolution of the Fultoportula. J. Phycol. 42: 121–138, https://doi.org/10.1111/j.1529-8817.2006.00161.x.Search in Google Scholar

Kaczmarska, I., Mather, L., Luddington, I.A., Muise, F., and Ehrman, J.M. (2014). Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): implications for ecology, biogeography, and taxonomy. Am. J. Bot. 101: 267–286, https://doi.org/10.3732/ajb.1300306.Search in Google Scholar PubMed

Knox, G.A. (2000). The Ecology of seashores. CRC Press, Boca Raton.10.1201/9781420042634Search in Google Scholar

Kooistra, W.H.C.F., Sarno, D., Balzano, S., Andersen, R.A., and Zingone, A. (2008). Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159: 177–193, https://doi.org/10.1016/j.protis.2007.09.004.Search in Google Scholar PubMed

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547–1549, https://doi.org/10.1093/molbev/msy096.Search in Google Scholar PubMed PubMed Central

Lang, I. and Kaczmarska, I. (2011). A protocol for a single‐cell PCR of diatoms from fixed samples: method validation using Ditylum brightwellii (West) Grunow. Diatom Res 26: 43–49, https://doi.org/10.1080/0269249x.2011.573703.Search in Google Scholar

Li, C.L., Witkowski, A., Ashworth, M.P., Przemyslaw, D., Sato, S., Zglobicka, I., Malgorzata, W., Khim, J.S., and Kwon, C.J. (2018). The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa 355: 001–104, https://doi.org/10.11646/phytotaxa.355.1.1.Search in Google Scholar

Macedo, C.X. (2007). Dinamica temporal de microalgas de zona de arrebentaçăo na praia de Navegantes – SC, Master dissertation. Universidade Federal do Paraná. Colletion of Universidade Federal do Paraná (UFPR). Available at: <https://acervodigital.ufpr.br/handle/1884/17738> (Accessed May 2022).Search in Google Scholar

MacGillivary, M.L. and Kaczmarska, I. (2011). Survey of the efficacy of a short fragment of the rbcL gene as a supplemental DNA barcode for diatoms. J. Eukaryot. Microbiol. 58: 529–536, https://doi.org/10.1111/j.1550-7408.2011.00585.x.Search in Google Scholar PubMed

Mann, D.G. and Vanormelingen, P. (2013). An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 60: 414–420, https://doi.org/10.1111/jeu.12047.Search in Google Scholar PubMed

Mann, D.G., Thomas, S.J., and Evans, K.M. (2008). Revision of the diatom genus Sellaphora: a first account of the larger species in the British Isles. Fottea 9: 15–78, https://doi.org/10.5507/fot.2008.002.Search in Google Scholar

Mann, D.G., Sato, S., Trobajo, R., Vanormelingen, P., and Souffreau, C. (2010). DNA barcoding for species identification and discovery in diatoms. Cryptogam. Algol. 31: 557–577.Search in Google Scholar

Medlin, L.K. and Kaczmarska, I. (2004). Evolution of the diatoms. V. Morphological and cytological support for the major clades and taxonomic revision. Phycologia 43: 245–270, https://doi.org/10.2216/i0031-8884-43-3-245.1.Search in Google Scholar

Moniz, M.B.J. and Kaczmarska, I. (2009). Barcoding diatoms: is there a good marker? Mol. Ecol. Resour. 9: 65–74, https://doi.org/10.1111/j.1755-0998.2009.02633.x.Search in Google Scholar PubMed

Moniz, M.B.J. and Kaczmarska, I. (2010). Barcoding of diatoms: nuclear encoded ITS revisited. Protist 161: 7–34, https://doi.org/10.1016/j.protis.2009.07.001.Search in Google Scholar PubMed

Montuori, E., Martinez, K.A., De Luca, D., Ianora, A., and Lauritano, C. (2023). Transcriptome sequencing of the diatom Asterionellopsis thurstonii and in silico identification of enzymes potentially involved in the synthesis of bioactive molecules. Mar. Drugs 21: 126, https://doi.org/10.3390/md21020126.Search in Google Scholar PubMed PubMed Central

Nakov, T., Beaulieu, J.M., and Alverson, A.J. (2018). Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (diatoms, Bacillariophyta). New Phytol. 219: 462–473, https://doi.org/10.1111/nph.15137.Search in Google Scholar PubMed PubMed Central

Nanjappa, D., Kooistra, W.H.C.F., and Zingone, A. (2013). A reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. J. Phycol. 49: 917–936, https://doi.org/10.1111/jpy.12102.Search in Google Scholar PubMed

Nei, M. and Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press, New York, p. 333.10.1093/oso/9780195135848.001.0001Search in Google Scholar

Odebrecht, C., Bergesch, M., Rörig, L.R., and Abreu, P.C. (2010). Phytoplankton interannual variability at Cassino Beach, Southern Brazil (1992–2007), with emphasis on the surf zone diatom Asterionellopsis glacialis. Estuar. Coast 33: 570–583, https://doi.org/10.1007/s12237-009-9176-6.Search in Google Scholar

Odebrecht, C., Du Preez, D.R., Abreu, P.C., and Campbell, E.E. (2014). Surf zone diatoms: a review of the drivers, patterns and role in sandy beaches food chains. Estuar. Coast. Shelf Sci. 150: 24–35, https://doi.org/10.1016/j.ecss.2013.07.011.Search in Google Scholar

Pinseel, E., Hejduková, E., Vanormelingen, P., Kopalová, K., Vyverman, W., and Vijver, B.V. (2017). Pinnularia catenaborealis sp. nov. (Bacillariophyceae), a unique chain-forming diatom species from James Ross Island and Vega Island (Maritime Antarctica). Phycologia 56: 94–107, https://doi.org/10.2216/16-18.1.Search in Google Scholar

Poulìcková, A., Veselá, J., Neustupa, J., and Skaloud, P. (2010). Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kütz (Bacillariophyceae) and morphologically similar taxa. Protist 161: 353–369, https://doi.org/10.1016/j.protis.2009.12.003.Search in Google Scholar PubMed

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21: 1864–1877, https://doi.org/10.1111/j.1365-294x.2011.05239.x.Search in Google Scholar PubMed

Puillandre, N., Brouillet, S., and Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21: 609–620, https://doi.org/10.1111/1755-0998.13281.Search in Google Scholar PubMed

Quijano‐Scheggia, S.I., Garcés, E., Lundholm, N., Moestrup, Ø., Andree, K., and Camp, J. (2009). Morphology, physiology, molecular phylogeny and sexual compatibility of the cryptic Pseudo‐nitzschia delicatissima complex (Bacillariophyta), including the description of P. arenysensis sp. nov. Phycologia 48: 492–509, https://doi.org/10.2216/08-21.1.Search in Google Scholar

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., and Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67: 901–904, https://doi.org/10.1093/sysbio/syy032.Search in Google Scholar PubMed PubMed Central

Ronquist, F. and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574, https://doi.org/10.1093/bioinformatics/btg180.Search in Google Scholar PubMed

Rörig, L.R., Honorato, M.C., Itakazu, A.G., Macedo, C.X., Deschamps, F., Lins, J.V.H., Maraschin, M., Ramlov, F., Gressler, P.D., and Filho, J.P. (2017). Ecophysiological and biochemical variation of the surf zone diatom Asterionellospsis glacialis sensu lato from Santa Catarina, Southern Brazil. Braz. J. Oceanogr. 65: 695–708, https://doi.org/10.1590/s1679-87592017118206504.Search in Google Scholar

Round, F.E., Crawford, R.M., and Mann, D.G. (1990). The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge.Search in Google Scholar

Sarno, D., Kooistra, W.H.C.F., Medlin, L.K., Percopo, I., and Zingone, A. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J. Phycol. 41: 151–176, https://doi.org/10.1111/j.1529-8817.2005.04067.x.Search in Google Scholar

Schluter, D. and Pennell, M.W. (2017). Speciation gradients and the distribution of biodiversity. Nature 546: 48–55, https://doi.org/10.1038/nature22897.Search in Google Scholar PubMed

Seddon, A.W.R., Froyd, C.A., and Wikowski, A. (2011). Diatoms (Bacillariophyta) of isolated islands: new taxa in the genus Navicula sensu stricto from the Galápagos Islands. J. Phycol. 47: 861–879, https://doi.org/10.1111/j.1529-8817.2011.01026.x.Search in Google Scholar PubMed

Simonsen, R. (1974). The diatom plankton of the Indian Ocean Expedition of RV “Meteor” 1964–1965 (Meteor Forschungsergebnisse). Gebrüder Borntraeger, Berlin.Search in Google Scholar

Sims, P.A., Williams, D.M., and Ashworth, A. (2018). Examination of type specimens for the genera Odontella and Zygoceros (Bacillariophyceae) with evidence for the new family Odontellaceae and a description of three new genera. Phytotaxa 382: 01–56, https://doi.org/10.11646/phytotaxa.382.1.1.Search in Google Scholar

Takano, Y. and Horiguchi, T. (2006). Acquiring scanning electron microscopical, light microscopical and multiple gene sequence data from a single dinoflagellate cell. J. Phycol. 42: 251–256, https://doi.org/10.1111/j.1529-8817.2006.00177.x.Search in Google Scholar

Tedesco, E.C., Ribeiro, S.M.M.S., Pompeu, M., Gaeta, S.A., and Cavalcante, K.P. (2017). Low-latitude accumulation of the surf-zone diatoms Anaulus australis Drebes & Schulz and Asterionellopsis glacialis (Castracane) Round species complex in the eastern coast of Brazil. Braz. J. Oceanogr. 65: 324–331, https://doi.org/10.1590/s1679-87592017137806502.Search in Google Scholar

Theriot, E.C., Ashworth, M., Ruck, E., Nakov, T., and Jansen, R.K. (2010). A preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for future research. Plant Ecol. Evol. 143: 278–296, https://doi.org/10.5091/plecevo.2010.418.Search in Google Scholar

Theriot, E.C., Ashworth, M., Nakov, T., Ruck, E., and Jansen, R.K. (2015). Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Mol. Phylogenet. Evol. 89: 28–36, https://doi.org/10.1016/j.ympev.2015.03.012.Search in Google Scholar PubMed

Trobajo, R., Clavero, E., Chepurnov, V.A., Sabbe, K., Mann, D.G., Ishihara, S., and Cox, E.J. (2009). Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443–459, https://doi.org/10.2216/08-69.1.Search in Google Scholar

Trobajo, R., Mann, D.G., Clavero, E., Evans, K.M., Vanormelingen, P., and McGregor, R.C. (2010). The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae). Eur. J. Phycol. 45: 413–425, https://doi.org/10.1080/09670262.2010.498586.Search in Google Scholar

Villac, M.C. and Noronha, V.A.P.C. (2008). The surf-zone phytoplankton of the State of São Paulo, Brazil. I. Trends in space-time distribution with emphasis on Asterionellopsis glacialis and Anaulus australis (Bacillariophyta). Nova Hedwigia 133: 115–129.Search in Google Scholar

Villar, E., Farrant, G.K., Follows, M., Garczarek, L., Speich, S., Audic, S., Bittner, L., Blanke, B., Brum, J.R., Brunet, C., et al.. (2015). Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348: 1261447, https://doi.org/10.1126/science.1261447.Search in Google Scholar PubMed

Williams, D.M. (1985). Morphology, taxonomy and inter-relationships of the ribbed araphid diatoms from the genera Diatoma and Meridion (Diatomaceae: Bacillariophyta). Bibliotheca Diatomologica 8. J. Cramer.Search in Google Scholar

Witkowski, A., Ashworth, M., Li, C., Sagnad, I., Yatte, D., Górecka, E., Franco, A.O.R., Kusber, W.H., Klein, G., Lange-Bertalota, H., et al.. (2020). Exploring diversity, taxonomy and phylogeny of diatoms (Bacillariophyta) from marine habitats. Novel taxa with internal costae. Protist 171: 125713, https://doi.org/10.1016/j.protis.2020.125713.Search in Google Scholar PubMed

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876, https://doi.org/10.1093/bioinformatics/btt499.Search in Google Scholar PubMed PubMed Central

Zingone, A., Percopo, I., Sims, P., and Sarno, D. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). I. A reexamination of S. costatum with the description of S. grevillei sp. nov. J. Phycol. 41: 140–150, https://doi.org/10.1111/j.1529-8817.2005.04066.x.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/bot-2022-0067).


Received: 2022-10-21
Accepted: 2023-08-01
Published Online: 2023-08-21
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2022-0067/html
Scroll to top button