Home Population genetic subdivision of seagrasses, Syringodium isoetifolium and Thalassia hemprichii, in the Indonesian Archipelago
Article
Licensed
Unlicensed Requires Authentication

Population genetic subdivision of seagrasses, Syringodium isoetifolium and Thalassia hemprichii, in the Indonesian Archipelago

  • Benjamin J. Wainwright

    Benjamin J. Wainwright’s research is primarily motivated by the conservation of biodiversity and understanding the mechanisms that create and maintain it. He has a particular interest in the marine regions of S.E. Asia, especially the Coral Triangle.

    ORCID logo EMAIL logo
    , Irma S. Arlyza and Stephen A. Karl
Published/Copyright: April 28, 2018

Abstract

The population genetics of two seagrasses, Syringodium isoetifolium and Thalassia hemprichii were assessed throughout the Indonesian Archipelago. We genotyped 257 blades of S. isoetifolium at 15 microsatellite loci collected from 14 sampling sites and 406 blades of T. hemprichii at 17 microsatellite loci from 16 sampling sites. Once clones were removed, 165 individuals of S. isoetifolium and 389 of T. hemprichii were used in downstream analyses. Bayesian clustering methods revealed two genetically distinguishable clusters in each species, although the geographic boundaries of these clusters differed. Syringodium isoetifolium has a cluster that is located exclusively on the shallow Sunda Shelf and appears to follow the demarcation defined by Wallace’s line. Thalassia hemprichii, however, has a genetically distinguishable cluster located within the Banda Sea. The Banda Sea has unique physical oceanographic conditions, which may be driving the observed differentiation in T. hemprichii. We speculate that historical sea level changes exposing the Sunda Shelf, and the unique oceanographic conditions of the Banda Sea are contributing to the observed population differentiation. The observed genetic differentiation in both species is a possible starting point for speciation.

About the author

Benjamin J. Wainwright

Benjamin J. Wainwright’s research is primarily motivated by the conservation of biodiversity and understanding the mechanisms that create and maintain it. He has a particular interest in the marine regions of S.E. Asia, especially the Coral Triangle.

Acknowledgements

We thank the Indonesian government, the Research Center for Oceanography Indonesian Institute of Sciences and RISTEK for collecting permits, 0085/SIP/FRP/SM/V/2010 and 0133/SIP/FRP/SM/V/2010 under which all collections were made in full accordance with Indonesian laws and regulations. We thank the many Indonesians who helped with invaluable advice, support and kindness, all at Maluku Divers, La P’tite Kepa, The North Halmahera Tourism Information Center, Wallacea dive cruises, World Wildlife Fund for Nature, and the Wildlife Conservation Society Karimunjawa marine program, Z Arifin, ON Marwayana, HY Sugeha, Suharsono, S Hou and staff at the Advanced Studies in Genomics, Proteomics and Bioinformatics facility at the University of Hawai‘I, Ria Tan. Funding for this work was provided by the TOTAL Foundation, The University of Hawai‘i Graduate Student Organization, University of Hawai‘i Arts and Sciences Student Research Award, University of Hawai‘i Edmondson Grant, Dai Ho Chun Fund for Graduate Fellowships, Research Corporation of the University of Hawaii Graduate Fellowship, Sigma XI Grants In Aid of Research, The Explorers Club and The Rufford Small Grants Foundation.

References

Ackiss, A.S., S. Pardede, E.D. Crandall, M. Ablan-Lagman, K.T. Ambariyanto, N. Romena, P.H. Barber and K.E. Carpenter. 2013. Pronounced genetic structure in a highly mobile coral reef fish, Caesio cuning, in the Coral Triangle. Mar. Ecol. Prog. Ser. 480: 185–197.10.3354/meps10199Search in Google Scholar

Allen, G.R. 2008. Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv. Mar. Fresh. Ecosyst. 5: 541–556.10.1002/aqc.880Search in Google Scholar

Babcock, R. 1992. Predictable and unpredictable spawning events: in situ behavioral data from free-spawning coral reef invertebrates. Invertebr. Reprod. Dev. 22: 213–227.10.1080/07924259.1992.9672274Search in Google Scholar

Baird, A.H., J.R. Guest and B.L. Willis. 2009. Systematic and biogeographical patterns in the reproductive biology of Scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40: 551–571.10.1146/annurev.ecolsys.110308.120220Search in Google Scholar

Barber, P.H. 2009. The challenge of understanding the Coral Triangle biodiversity hotspot. J. Biogeogr. 36: 1845–1846.10.1111/j.1365-2699.2009.02198.xSearch in Google Scholar

Bird, C.E., B.S. Holland, B.W. Bowen and R.J. Toonen. 2007. Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories. Mol. Ecol. 16: 3173–3186.10.1111/j.1365-294X.2007.03385.xSearch in Google Scholar PubMed

Bird, C.E., P.E. Smouse, S.A. Karl and R.J. Toonen. 2011. Detecting and measuring genetic differentiation. Crustacean issues. In: (C.D. Schubart, ed.) Phylogeography and population genetics in Crustacea. CRC Press, Boca Raton, FL, USA. pp. 31–55.10.1201/b11113-4Search in Google Scholar

Boutin-Ganache, I., M. Raposo, M. Raymond and C.F. Deschepper. 2001. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31: 24–26.10.2144/01311bm02Search in Google Scholar

Bowen, B.W., L.A. Rocha, R.J. Toonen, S.A. Karl and Tobo Laboratory. 2013. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28: 359–366.10.1016/j.tree.2013.01.018Search in Google Scholar PubMed

Bradbury, I.R. and P. Bentzen. 2007. Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations. Mar. Ecol. Prog. Ser. 340: 245–257.10.3354/meps340245Search in Google Scholar

Briggs, J.C. 2005. The marine East Indies: diversity and speciation. J. Biogeogr. 32: 1517–1522.10.1111/j.1365-2699.2005.01266.xSearch in Google Scholar

Campbell, M.L. and E.I. Paling. 2003. Evaluating vegetative transplanting success in Posidonia australis: a field trial with habitat enhancement. Mar. Pollut. Bull. 46: 828–834.10.1016/S0025-326X(03)00093-6Search in Google Scholar

Collette, B.B. 2005. Is the east–west division of haplotypes of the three-spot seahorse along Wallace’s Line novel among marine organisms? J. Biogeogr. 32: 1281–1286.10.1111/j.1365-2699.2005.01277.xSearch in Google Scholar

Cornuet, J.M. and G. Luikart. 1997. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.10.1093/genetics/144.4.2001Search in Google Scholar PubMed PubMed Central

DeBoer, T.S., M.R.A. Naguit, M.V. Erdmann, M.C.A. Ablan-Lagman, Ambariyanto, K.E. Carpenter, A.H.A. Toha and P.H. Barber. 2014. Concordant phylogenetic patterns inferred from mitochondrial and microsatellite DNA in the giant clam Tridacna crocea. Bull. Mar. Sci. 90: 301–329.10.5343/bms.2013.1002Search in Google Scholar

Earl, D.A. and B.M. von Holdt. 2012. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4: 359–361.10.1007/s12686-011-9548-7Search in Google Scholar

Economist. 2014. In Deep Water. http://www.economist.com/news/international/21596990-humans-are-damaging-high-seas-now-oceans-are-doing-harm-back-deep-water. Accessed 15 Aug 2017.Search in Google Scholar

Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14: 2611–2620.10.1111/j.1365-294X.2005.02553.xSearch in Google Scholar PubMed

Evans, S.M., E.A. Sinclair, A.G.B. Poore, P.D. Steinberg, G.A. Knedrick and A. Vergés. 2014. Genetic diversity in threatened Posidonia australis seagrass meadows. Conserv. Genet. 15: 717–728.10.1007/s10592-014-0573-4Search in Google Scholar

Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564–567.10.1111/j.1755-0998.2010.02847.xSearch in Google Scholar PubMed

Fishman, J.R., R.J. Orth, S. Marion and J. Bieri. 2004. A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake Bay. Restor. Ecol. 12: 214–219.10.1111/j.1061-2971.2004.00314.xSearch in Google Scholar

Fonseca, M.S., W.J. Kenworthy and G.W. Thayer. 1998. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Office, Silver Spring, MD.Search in Google Scholar

Goudet, J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485–486.10.1093/oxfordjournals.jhered.a111627Search in Google Scholar

Hernawan, U.E., K.-J. van Dijk, G.A. Kendrick, M. Feng, E. Biffin, P.S. Lavery and K. McMahon. 2017. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol. Ecol. 26: 1008–1021.10.1111/mec.13966Search in Google Scholar PubMed

Holleley, C.E. and P.G. Geerts. 2009. MULTIPLEX MANAGER 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46: 511–517.10.2144/000113156Search in Google Scholar PubMed

Hughes, T.P., D.R. Bellwood and S.R. Connolly. 2002. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 5: 775–784.10.1046/j.1461-0248.2002.00383.xSearch in Google Scholar

Huxley, T.H. 1868. On the classification and distribution of the Alectoromorphae and Heteromorphae. Proc. Zool. Soc. Lond. 294–319. https://archive.org/details/cbarchive_52167_ontheclassificationanddistribu9999.Search in Google Scholar

International Union for Conservation of Nature (IUCN). 2010a. Syringodium isoetifolium. The IUCN Red List of Threatened Species. Version 2015.2. http://maps.iucnredlist.org/map.html?id=173332. Accessed 15 Aug 2017.Search in Google Scholar

International Union for Conservation of Nature (IUCN). 2010b. Thalassia hemprichii. The IUCN Red List of Threatened Species. Version 2015.2. http://maps.iucnredlist.org/map.html?id=173364. Accessed 15 Aug 2017.Search in Google Scholar

Jakobsson, M. and N.A. Rosenberg. 2007. Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.10.1093/bioinformatics/btm233Search in Google Scholar PubMed

Jensen, J.L., A.J. Bohonak and S.T. Kelley. 2005. Isolation by distance, web service. BMC Genet. 6: 13.10.1186/1471-2156-6-13Search in Google Scholar PubMed PubMed Central

Kaiser, M.J., M.J. Attrill, S. Jennings, D.N. Thomas, D.K. Barnes, A.S. Brierley, N.V. Polunin, D.G. Raffaelli and P.J.L.B. Williams. 2005. Marine ecology: processes, systems and impacts. Oxford University Press, Oxford, UK.Search in Google Scholar

Kochzius, M. and A. Nuryanto. 2008. Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity. Mol. Ecol. 17: 3775–3787.10.1111/j.1365-294X.2008.03803.xSearch in Google Scholar PubMed

Kopelman, N.M., J. Mayzel, M. Jakobsson, N.A. Rosenberg and I. Mayrose. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour.15: 1179–1191.10.1111/1755-0998.12387Search in Google Scholar PubMed PubMed Central

Kurokochi, H., Y. Matsuki, Y. Nakajima, M.D. Fortes, W.H. Uy, W.L. Campos, K. Nadaoka and C. Lian. 2016. A baseline for the genetic conservation of tropical seagrasses in the western North Pacific under the influence of the Kuroshio Current: the case of Syringodium isoetifolium. Conserv. Genet. 17: 103–110.10.1007/s10592-015-0764-7Search in Google Scholar

Lacap, C.D.A., J.E. Vermaat, R.N. Rollon and H.M. Nacorda. 2002. Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar. Ecol. Prog. Ser. 235: 75–80.10.3354/meps235075Search in Google Scholar

Lourie, S.A. and A.C.J. Vincent. 2004. A marine fish follows Wallace’s Line: the phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia. J. Biogeogr. 31: 1975–1985.10.1111/j.1365-2699.2004.01153.xSearch in Google Scholar

Lydekker, R. 1896. A geographical history of mammals. Cambridge University Press, Cambridge, UK.10.5962/bhl.title.31155Search in Google Scholar

Mangubhai, S. and P.L. Harrison. 2008. Asynchronous coral spawning patterns on equatorial reefs in Kenya. Mar. Ecol. Prog. Ser. 360: 85–96.10.3354/meps07385Search in Google Scholar

Matsuki, Y., A. Takahashi, Y. Nakajima, C. Lian, M.D. Fortes, W.H. Uy, W.L. Campos, M. Nakaoka and K. Nadaoka. 2013. Development of microsatellite markers in a tropical seagrass Syringodium isoetifolium (Cymodoceaceae). Conserv. Genet. Res. 5: 715–717.10.1007/s12686-013-9889-5Search in Google Scholar

Meirmans, P.G. and P.H. Van Tienderen. 2004. Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Res. 4: 792–794.10.1111/j.1471-8286.2004.00770.xSearch in Google Scholar

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.10.1038/35002501Search in Google Scholar PubMed

Olesen, B., N. Marba, C.M. Duarte, R.S. Savela and M.D. Fortes. 2004. Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27: 770–780.10.1007/BF02912039Search in Google Scholar

Padilla-Gamino, J.L. and R.D. Gates. 2012. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449: 145–160.10.3354/meps09530Search in Google Scholar

Pandey, V.K. and A.C. Pandey. 2006. Heat transport through Indonesian throughflow. J. Ind. Geophys. Union 10: 273–277.Search in Google Scholar

Penland, L., J. Kloulechad, S. Idip and R. van Woesik. 2004. Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23: 133–140.10.1007/s00338-003-0362-xSearch in Google Scholar

Piry, S., G. Luikart and J.M. Cournuet. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502–503.10.1093/jhered/90.4.502Search in Google Scholar

Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.10.1093/genetics/155.2.945Search in Google Scholar PubMed PubMed Central

Procaccini, G. and L. Piazzi. 2001. Genetic polymorphism and transplantation success in the Mediterranean seagrass Posidonia oceanica. Restor. Ecol. 9: 332–338.10.1046/j.1526-100x.2001.009003332.xSearch in Google Scholar

Reid, D.G., K. Lai, J. Mackenzie-Dobbs, F. Kaligis, D.T.J. Littlewood and S.T. Williams. 2006. Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. J. Biogeogr. 33: 990–1006.10.1111/j.1365-2699.2006.01469.xSearch in Google Scholar

Riginos, C., K.E. Douglas, Y. Jin, D.F. Shanahan and E.A. Treml. 2011. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34: 566–575.10.1111/j.1600-0587.2010.06511.xSearch in Google Scholar

Roberts, C.M., C.J. McClean, J.E.N. Veron, J.P. Hawkins, G.R. Allen, D.E. McAllister, C.G. Mittermeier, F.W. Schueler, M. Spalding, F. Wells, C. Vynne and T.B. Werner. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295: 1280–1284.10.1126/science.1067728Search in Google Scholar PubMed

Rosenberg, N.A. 2004. Distruct: a program for the graphical display of population structure. Mol. Ecol. Resour. 4: 137–138.10.1046/j.1471-8286.2003.00566.xSearch in Google Scholar

Rosser, N.L. and J.P. Gilmour. 2008. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27: 345–349.10.1007/s00338-007-0335-6Search in Google Scholar

Sala, E., O. Aburto-Oropeza, G. Paredes, I. Parra, J.C. Barrera and P.K. Dayton. 2002. A general model for designing networks of marine reserves. Science 298: 1991–1993.10.1126/science.1075284Search in Google Scholar PubMed

Selkoe, K.A. and R.J. Toonen. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615–629.10.1111/j.1461-0248.2006.00889.xSearch in Google Scholar PubMed

Selkoe, K.A. and R.J. Toonen. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436: 291–305.10.3354/meps09238Search in Google Scholar

Shanks, A.L. 2009. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216: 373–385.10.1086/BBLv216n3p373Search in Google Scholar

Short, F., T. Carruthers, W. Dennison and M. Waycott. 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350: 3–20.10.1016/j.jembe.2007.06.012Search in Google Scholar

Spalding, M.D., M. Taylor, C. Ravilious, F. Short and E. Green. 2003. Global overview the distribution and status of seagrasses. In: (E.P. Green and F.T. Short, eds) World atlas of seagrasses. University of California Press, Berkeley, CA. pp. 5–26.Search in Google Scholar

Stobart, B., R.C. Babcock and B.L. Willis. 1993. Biannual spawning of three species of scleractinian coral from the Great Barrier Reef. In: (R.H. Richmond, ed) Proceedings of the 7th International Coral Reef Symposium, vol. 1. University of Guam Press, UOG Station, Guam. pp. 494–499.Search in Google Scholar

Thorhaug, A. 1987. Large-scale seagrass restoration in a damaged estuary. Mar. Pollut. Bull. 18: 442–446.10.1016/0025-326X(87)90621-7Search in Google Scholar

Tomascik, T., A. Nontji and M.K. Moosa. 1997. The ecology of the Indonesian seas: Part 1. Periplus Editions Ltd., Hong Kong. ISBN 962-593-078–077.Search in Google Scholar

Unsworth, R.K.F., C.J. Collier, M. Waycott, L.J. Mckenzie and C. Cullen-Unsworth. 2015. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 1: 34–46.10.1016/j.marpolbul.2015.08.016Search in Google Scholar PubMed

van Aken, H.M., I.S. Brodjonegoro and I. Jaya. 2009. The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep. Sea. Res. 56: 1203–1216.10.1016/j.dsr.2009.02.001Search in Google Scholar

van Dijk, J.K. and B.I. van Tussenbroek. 2010. Clonal diversity and structure related to habitat of the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquat. Bot. 1: 63–69.10.1016/j.aquabot.2009.10.005Search in Google Scholar

van Katwijk, M.M., A.R. Bos, V.N. de Jonge, L.S.A.M. Hanssen, D.C.R. Hermus and D.J. de Jong. 2009. Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar. Pollut. Bull. 58: 179–188.10.1016/j.marpolbul.2008.09.028Search in Google Scholar PubMed

van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills and P. Shipley. 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535–538.10.1111/j.1471-8286.2004.00684.xSearch in Google Scholar

Voris, H.K. 2000. Maps of pleistocenesea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27: 1153–1167.10.1046/j.1365-2699.2000.00489.xSearch in Google Scholar

Wallace, A.R. 1860. On the zoological geography of the Malay Archipelago. J. Proc. Linn. Soc. Zool. 4: 172–184.10.1111/j.1096-3642.1860.tb00090.xSearch in Google Scholar

Wainwright, B.J., I.S. Arlyza and S.A. Karl. 2013a. Isolation and characterization of eighteen polymorphic microsatellite loci for the topical seagrass, Syringodium isoetifolium. Conserv. Genet. Res. 5: 943–945.10.1007/s12686-013-9938-0Search in Google Scholar

Wainwright, B.J., I.S. Arlyza and S.A. Karl. 2013b. Isolation and characterization of twenty-four polymorphic microsatellite loci for the topical seagrass, Thalassia hemprichii. Conserv. Genet. Res. 5: 939–941.10.1007/s12686-013-9937-1Search in Google Scholar

Wang, M., G.N. Ahmadia, I. Chollett, C. Huang, H. Fox, A. Wijonarno and M. Madden. 2015. Delineating biophysical environments of the Sunda Banda Seascape, Indonesia. Int. J. Environ. Res. Public Health 12: 1069–1082.10.3390/ijerph120201069Search in Google Scholar

West, R.J., N.E. Jacobs and D.E. Roberts. 1990. Experimental transplanting of seagrasses in Botany Bay, Australia. Mar. Pollut. Bull. 21: 197–203.10.1016/0025-326X(90)90502-YSearch in Google Scholar

Williams, S.L. 2001. Reduced genetic diversity in eelgrass transplantations affects both population growth and individual fitness. Ecol. Appl. 11: 1472–1488.10.1890/1051-0761(2001)011[1472:RGDIET]2.0.CO;2Search in Google Scholar

Wright, S.I., S. Kalisz and T. Slotte. 2013. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 280: 20130133.10.1098/rspb.2013.0133Search in Google Scholar

Yahya, A.F., J.O. Hyun, J.H. Lee, Y.Y. Kim, K.M. Lee, K.N. Hong and S.C. Kim. 2014. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the Greater Sunda Islands, Indonesia using microsatellite markers. J. Plant. Res. 127: 287–297.10.1007/s10265-013-0613-zSearch in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/botmar-2017-0058).


Received: 2017-8-15
Accepted: 2018-3-23
Published Online: 2018-4-28
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2017-0058/html?lang=en
Scroll to top button