Home Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha
Article
Licensed
Unlicensed Requires Authentication

Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha

  • Miaoxian Yang , Jiating Li , Chanjuan Ye and Hong Liang EMAIL logo
Published/Copyright: July 31, 2017
Become an author with De Gruyter Brill

Abstract

Chalcone isomerase-like (CHIL) belongs to the type IV CHI proteins whose roles in cell remain largely unclear. In the present study, we characterized an AcCHIL gene encoding Actinidia chrysantha CHIL protein. The very similar gene structure organization and high sequence identity of AcCHIL with the only two functionally reported CHIL genes (Japanese morning glory InCHIL and Arabidopsis AtCHIL) suggest a similar role of AcCHIL with AtCHIL and InCHIL in promoting flavonoid production and flower pigmentation. The spatial expression analysis shows that AcCHIL gene is expressed predominantly in leaves and stems of A. chrysantha. Consistent with the typical predicted low-temperature-responsive element, abscisic acid (ABA)-responsive element and heat stress-responsive element in the promoter sequence of AcCHIL, the expression of AcCHIL gene in leaves and stems of A. chrysantha, and in petals of A. eriantha are significantly up-regulated by low-temperature and exogenous ABA, but down-regulated by heat stress, though the mRNA levels of AcCHIL in petals of A. chrysantha are always weak and not affected by those stresses. Pink-red petals of A. eriantha instead of golden-yellow petals of A. chrysantha accumulated substantial anthocyanin in response to low temperature and exogenous ABA. Heat stress decreased the anthocyanin accumulation in A. eriantha petals. Interestingly, the content of a yellow colored chalcone, chalcone 2’-glucoside in golden-yellow petals of A. chrysantha is significantly higher than that in pink-red petals of A. eriantha under both the stressed and control conditions. A close correlation between the low levels of AcCHIL mRNA and high levels of accumulated yellow colored chalcone 2’-glucoside in A. chrysantha petals gives an explanation for the formation of distinctive golden-yellow petals in A. chrysantha.


Contributed equally to this work


Acknowledgements

This study was jointly supported by the grants from Guangdong Natural Science Foundation (approved Nos 2016A030313370 and 9251022501000001) and Key Lab for Modernization of Characteristic Agriculture in Guangdong Province [(2015)118].

References

Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool.J. Mol. Biol. 215: 403–410.10.1016/S0022-2836(05)80360-2Search in Google Scholar

Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISSMODEL workspace: A web-based environment for protein structure homology modeling. Bioinformatics 22: 195–201.10.1093/bioinformatics/bti770Search in Google Scholar PubMed

Appelhagen I., Thiedig K., Nordholt N., Schmidt N., Huep G., Sagasser M. & Weisshaar B. 2014. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta 240: 955–970.10.1007/s00425-014-2088-0Search in Google Scholar PubMed

Crowhurst R.N., Gleave A.P., MacRae E.A., Ampomah-Dwamena C., Atkinson R.G., Beuning L.L., Bulley S.M., Chagne D., Marsh K.B., Matich A.J., and other 35 authors. 2008. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST data base for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 9(1):351.10.1186/1471-2164-9-351Search in Google Scholar PubMed PubMed Central

Dastmalchi M. & Dhaubhadel S. 2015. Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. Planta 241(2): 507-523.10.1007/s00425-014-2200-5Search in Google Scholar PubMed

Davies K.M., Bloor S.J., Spiller G.B. & Deroles S.C. 1998. Production of yellow color in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J. 13: 259–266.10.1046/j.1365-313X.1998.00029.xSearch in Google Scholar

Ferreyra F.M.L., Rius S.P. & Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3: 222.Search in Google Scholar

Fraser L.G., Seal A.G., Montefiori M., McGhie T.K., Tsang G.K., Datson P.M., Hilario E., Marsh H.E., Dunn J.K., Hellens R.P., Davies K.M., McNeilage M.A., De Silva H.N. & Allan A.C. 2013. An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics 14: 28.10.1186/1471-2164-14-28Search in Google Scholar PubMed PubMed Central

Gong H.J., Li J.W., Jiang Q.S., Zhang J.C. & Ye K.Y. 2012. Analysis on the characteristics of the dominant community of rare and endangered plant Actinidia chrysantha. J. Zhejiang A & F University 29(2): 301–306.Search in Google Scholar

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780.10.1146/annurev.arplant.57.032905.105248Search in Google Scholar PubMed

Hartmann U., Sagasser M., Mehrtens F., Stracke R. & Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57: 155–171.10.1007/s11103-004-6910-0Search in Google Scholar PubMed

Hassan S. & Mathesius U. 2012. The role of flavonoids in root–rhizospheresignalling: opportunities and challenges for improving plant–microbe interactions. J. Exp. Bot. 63: 3429–3444.10.1093/jxb/err430Search in Google Scholar PubMed

Higo K., Ugawa Y., Iwamoto M. & Korenaga T.1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27: 297–300.10.1093/nar/26.1.358Search in Google Scholar PubMed PubMed Central

Huang, H.W. & Ferguson A.R. 2007. Genetic resources of kiwifruit: domestication and breeding. Horticul. Rev. 33: 1-121.10.1002/9780470168011.ch1Search in Google Scholar

Jez J.M., Bowman M.E., Dixon R.A. & Noel J.P. 2000. Evolution of the chalcone isomerase fold from fatty-acid binding to stereospecific catalysis; nature, structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Mol. Biol. 7: 786–791.10.1038/79025Search in Google Scholar PubMed

Jiang W., Yin Q., Wu R., Zheng G., Liu J., Dixon R.A. & Pang Y. 2015. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. J. Exp. Bot. 66: 7165–7179.10.1093/jxb/erv413Search in Google Scholar PubMed PubMed Central

Lai B., Li X.J., Hu B., Qin Y.H., Huang X.M., Wang H.C. & Hu G.B. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE 9(1):e86293. 10.1371/journal.pone.0086293.Search in Google Scholar PubMed PubMed Central

Lescot M., Ddhais P., Thijs G., Marchal K., Moreau Y., van de Peer Y., Rouzd P. & Rombauts S. 2002. PlantCARE: A PlantCARE: A database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325–327.10.1093/nar/30.1.325Search in Google Scholar PubMed PubMed Central

Lin-Wang K., Micheletti D., Palmer J., Volz R., Lozano L., Espley R., Hellens R.P., Chagne D., Rowan D.D., Troggio M., Iglesias I. & Allan A.C. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34: 1176–1190.10.1111/j.1365-3040.2011.02316.xSearch in Google Scholar PubMed

Liu S., Lv Y., Wan X.R., Li L.M. Hu B. & Li L. 2014. Cloning and expression analysis of cDNAs encoding ABA 8’-hydroxylase in peanut plants in response to osmotic stress. PLoS ONE 9(5), e97025. 10.1371/journal.pone.0097025.Search in Google Scholar PubMed PubMed Central

Morita Y., Takagi K., Fukuchi-Mizutani M., Ishiguro K., Tanaka Y., Nitasaka E., Nakayama M., Saito N., Kagami T., Hoshino A. & Iida S. 2014. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant J. 78: 294–304.10.1111/tpj.12469Search in Google Scholar PubMed

Muir S., Collins G., Robinson S., Hughes S., Bovy A., DeVos C., vanTunen A. & Verhoeyen M. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19: 470–474.10.1038/88150Search in Google Scholar PubMed

Muller P.Y., Janovjak H., Miserez A.R. & Dobbie Z. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1379.Search in Google Scholar

Ngaki M.N., Louie G.V., Philippe R.N., Manning G., Pojer F., Bowman M.E., Li L., Larsen E., Wurtele E.S. & Noel J.P. 2012. Evolution of the chalcone isomerase fold from fattyacid binding to stereospecific catalysis. Nature 485(7399): 530–533.10.1038/nature11009Search in Google Scholar PubMed PubMed Central

Przysiecka Ł., Ksiazkiewicz M., Wolko B. & Naganowska B. 2015. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. Front. Plant Sci. 6: 268. 10.3389/fpls.2015.00268.Search in Google Scholar PubMed PubMed Central

Ralston L., Subramanian S., Matsuno M. & Yu O. 2005. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol. 137: 1375–1388.10.1104/pp.104.054502Search in Google Scholar PubMed PubMed Central

Saito N., Tatsuzawa F., Hoshino A., Abe Y., Ichimura M., Yokoi M., Toki K., Morita Y., Iida S. & Honda T. 2011. Anthocyanin pigmentation controlled by speckled and c–1 mutations of Japanese morning glory. J. Jpn. Soc. Hort. Sci. 80: 452–460.10.2503/jjshs1.80.452Search in Google Scholar

Saito R., Fukuta N., Ohmiya A., Itoh Y., Ozeki Y., Kuchitsu K. & Nakayama M. 2006. Regulation of anthocyanin biosynthesis involved in formation of marginal picotee petals in Petunia. Plant Sci. 170: 828–834.10.1016/j.plantsci.2005.12.003Search in Google Scholar

Schwede T., Kopp J., Guex N. & Peitsch M.C. 2003. SWISSMODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381–3385.10.1093/nar/gkg520Search in Google Scholar PubMed PubMed Central

Shen X., Zhao K., Liu L., Zhang K., Yuan H., Liao X., Wang Q., Guo X., Li F. & Li T. 2014. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol. 55: 862–880.10.1093/pcp/pcu013Search in Google Scholar PubMed

Shimada N., Aoki T., Sato S., Nakamura Y., Tabata S. & Ayabe S. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy (iso) flavonoids in Lotus japonica. Plant Physiol. 131: 941-951.10.1104/pp.004820Search in Google Scholar PubMed PubMed Central

Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.10.1093/molbev/msm092Search in Google Scholar PubMed

Tanaka Y., Sasaki N. & Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749.10.1111/j.1365-313X.2008.03447.xSearch in Google Scholar PubMed

Varkonyi-Gasic E., Moss S.M., Voogd C., Wu R., Lough R.H., Wang Y.Y. & Hellens R.P. 2011. Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biol. 11: 72—86.10.1186/1471-2229-11-72Search in Google Scholar PubMed PubMed Central

Wan X. & Li L. 2005. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9 cisepoxycarotenoid dioxygenase in Arachis hypogaea L. DNA Seq. 16: 217–223.10.1080/10425170500129785Search in Google Scholar PubMed

Wan X. & Li L. 2006. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9 cis-epoxycarotenoid dioxygenase gene. Biochem. Biophys. Res. Commun. 347: 1030–1038.10.1016/j.bbrc.2006.07.026Search in Google Scholar PubMed

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485–493.10.1104/pp.126.2.485Search in Google Scholar PubMed PubMed Central

Xie X.B., Li S., Zhang R.F., Zhao J., Chen Y.C., Zhao Q., Yao Y.X., You C.X., Zhang X.S. & Hao Y.J. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ. 35: 1884–1897.10.1111/j.1365-3040.2012.02523.xSearch in Google Scholar PubMed

Yonekura-Sakakibara K., Fukushima A., Nakabayashi R., Hanada K., Matsuda F., Sugawara S., Inoue E., Kuromori T., Ito T., Shinozaki K. Wangwattana B., Yamazaki M. & Saito K. 2012. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J. 69: 154–167.10.1111/j.1365-313X.2011.04779.xSearch in Google Scholar PubMed PubMed Central

Yonekura-Sakakibara K., Tohge T., Matsuda F., Nakabayashi R., Takayama H., Niida R., Watanabe-Takahashi A., Inoue E. & Saito K. 2008. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding genemetabolite correlations in Arabidopsis. Plant Cell 20: 2160–2176.10.1105/tpc.108.058040Search in Google Scholar PubMed PubMed Central

Zeng M.H., Liu S.H., Yang M.X., Zhang Y.J., Liang J.Y., Wan X.R. & Liang H. 2013. Characterization of a gene encoding clathrin heavy chain in maize up-regulated by salicylic acid, abscisic acid and high boron supply. Int. J. Mol. Sci. 14: 15179-15198.10.3390/ijms140715179Search in Google Scholar PubMed PubMed Central

Zhang H., Liu J., Lu, H. & Gao S. 2009. Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep. 28: 1205–1213.10.1007/s00299-009-0721-3Search in Google Scholar PubMed

Received: 2017-3-14
Accepted: 2017-4-25
Published Online: 2017-7-31
Published in Print: 2017-7-26

© 2017 Institute of botany, Slovak Academy of Sciences

Articles in the same Issue

  1. Botany
  2. Comparative morphoanatomical analysis of the leaves and stems of Daphne (Thymelaeaceae) species
  3. Botany
  4. Effect of the Gabčíkovo Waterworks (Slovakia) on riparian floodplain forest ecosystems in the Danube inland delta: vegetation dynamics and trends
  5. Botany
  6. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale
  7. Botany
  8. Identification and expression analyses of two lotus (Nelumbo nucifera) dehydrin genes in response to adverse temperatures, ABA and IAA treatments
  9. Botany
  10. Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha
  11. Cellular and Molecular Biology
  12. Citrus flavonoids collectively dominate the α-amylase and α-glucosidase inhibitions
  13. Zoology
  14. Distribution, diversity and some ecological characteristics of ostracods (Crustacea: Ostracoda) in Gökçeada (Imbros) Island (Northern Aegean Sea, Turkey)
  15. Zoology
  16. Native crab and crayfish co-occurrence: First evidence in Europe
  17. Zoology
  18. DNA barcoding and first records of two rare Adicella species (Trichoptera: Leptoceridae) in Croatia
  19. Zoology
  20. Occurrence of Tomicobia seitneri (Hymenoptera: Pteromalidae) and Ropalophorus clavicornis (Hymenoptera: Braconidae) in Ips typographus adults (Coleoptera: Curculionidae: Scolytinae) from Austria, Poland and France
  21. Zoology
  22. Cockroach forewing area and venation variabilities relate
  23. Zoology
  24. First data on the population of the European pond turtle Emys orbicularis at Lake Tonga, El Kala National Park, Algeria
Downloaded on 19.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0084/html
Scroll to top button