Home Effects of food and thermal regimes on body condition indices and skin colouration in corn snakes
Article
Licensed
Unlicensed Requires Authentication

Effects of food and thermal regimes on body condition indices and skin colouration in corn snakes

  • Radovan Václav EMAIL logo and Zuzana Kolníková
Published/Copyright: February 18, 2017
Become an author with De Gruyter Brill

Abstract

One of the open problems in evolutionary ecology is signal reliability. While the view that signals need to be costly to be honest has attracted most attention, this type of signals may apply only to some contexts. Also, different views exist about the nature of costs involved in signal honesty, and the classification and examination of these costs remains controversial. Pigmentarybased colouration of animal integuments has received considerable attention among researchers seeking to explain what maintains the honesty of visual signals, but support for existing hypotheses is far from conclusive. Here we use a whole-animal approach and consider a distinct time scale, the period of juvenile growth, to test the effects of different feeding and thermal regimes on different physical parameters and skin colouration in corn snakes Pantherophis guttatus. Postnatal body length growth rate and body mass index (BMI) were sensitive to the thermal, but not to the food regime. The length of intervals between skin shedding was shorter and the short-wavelength reflectance of dorsal skin was higher for snakes receiving food more frequently and having an uninterrupted possibility to thermoregulate. This work suggests that if juvenile corn snakes are environmentally constrained, their preferred life history strategy is to grow at faster rates. The study adds to the growing body of evidence in that BMI may not accurately reflect individual condition in reptiles. Instead, this study demonstrates that the length of shedding intervals and the short-wavelength component of skin colouration may be used in this animal system as proxies of the individual’s condition or quality, possibly reflecting exposure to environmental stress or an ability to cope with it.

Acknowledgements

This contribution is the result of the project implementation of the Center of excellence for protection and use of landscape and biodiversity (ITMS 26240120014) supported by the Research & Development Operational Programme funded by the ERDF. We are grateful to three anonymous reviewers for their constructive comments and suggestions. Z. Kolníková would like to thank her parents for their support in making the long-term experiment possible in their household.

References

Angilletta, M.J. 2009. Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University Press, New York, 304 pp. ISBN: 978019857088210.1093/acprof:oso/9780198570875.001.1Search in Google Scholar

Arendt J.D. 1997. Adaptive intrinsic growth rates: an integration across taxa. Quart. Rev. Biol. 72 (2): 149–177. DOI: 10.1086/419764Search in Google Scholar

Bajer K., Molnár O., Török J. & Herczeg G. 2011. Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol. Lett. 7 (6): 866–868. DOI: 10.1098/rsbl.2011.0520Search in Google Scholar PubMed PubMed Central

Bajer K., Molnár O., Török J. & Herczeg G. 2012. Temperature, but not available energy, affects the expression of a sexually selected ultraviolet (UV) colour trait in male European green lizards. PLoS One 7: e34359. DOI: 10.1371/journal.pone.0034359Search in Google Scholar PubMed PubMed Central

Bates D., Maechler M., Bolker B. & Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67 (1): 1–48. DOI: 10.18637/jss.v067.i01Search in Google Scholar

Bechtel H.B. 1978. Color and pattern in snakes (Reptilia, Serpentes). J. Herpetol. 12 (4): 521–532. DOI: 10.2307/1563357Search in Google Scholar

Bechtel H.B. 1995. Reptile and Amphibian Variants: Colors, Patterns, and Scales. Krieger Publishing Company, University of California, 224 pp. ISBN-10: 0894648624Search in Google Scholar

Bechtel H.B. & Bechtel E. 1978. Heredity of pattern mutation in the corn snake, Elaphe g. guttata, demonstrated in captive breedings. Copeia 4: 719–721. DOI: 10.2307/1443708Search in Google Scholar

Biernaskie J.M., Grafen A. & Perry J.C. 2014. The evolution of index signals to avoid the cost of dishonesty. Proc. R. Soc. B 281: e20140876. DOI: 10.1098/rspb.2014.0876Search in Google Scholar PubMed PubMed Central

Blount J.D. & McGraw K.J. 2008. Signal functions of carotenoid colouration, pp. 213–236. DOI: 10.1007/978-3-7643-7499-0_11. In: Britton G., Liaaen-Jensen S. & Pfander H. (eds), Carotenoids, Vol. 4. Natural Functions, Birkhäuser, Basel, 370 pp. ISBN: 978-3-7643-7498-3Search in Google Scholar

Bronikowski A.M. 2000. Experimental evidence for the adaptive evolution of growth rate in the garter snake Thamnophis elegans. Evolution 54 (5): 1760–1767. DOI: 10.1111/j.0014-3820.2000.tb00719.xSearch in Google Scholar PubMed

Burkett R.D. 1966. Natural history of the cotton-mouth moccasin, Agkistrodon piscivorus (Reptilia). Univ. Kansas Publ. Mus. Nat. Hist. 17 (9): 435–491.Search in Google Scholar

Constantini D. & Møller A.P. 2008. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22 (2): 367–370. DOI: 10.1111/j.1365-2435.2007.01366.xSearch in Google Scholar

Cotton S., Fowler K. & Pomiankowski A. 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. B 271: 771–783. DOI: 10.1098/rspb.2004.2688Search in Google Scholar

Cuervo J.J., Belliure J. & Negro J.J. 2016. Coloration reflects skin pterin concentration in a red-tailed lizard. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 193: 17–24. DOI: 10.1016/j.cbpb.2015.11.011Search in Google Scholar

Cuthill I.C., Bennett A.T.D., Partridge J.C. & Maier E.J. 1999. Plumage reflectance and the objective assessment of avian sexual dichromatism. Am. Nat. 153 (2): 183–200. DOI: 10.1086/303160Search in Google Scholar

Duellman W.E. 1978. The Biology of an Equatorial Herpetofauna in Amazonian Ecuador. Miscellaneous publications – University of Kansas, Museum of Natural History – No. 65, 352 pp.Search in Google Scholar

Duellman W.E. & Trueb L. 1986. Biology of Amphibians. Johns Hopkins University Press, Baltimore, 620 pp. ISBN: 978080184780610.2307/1445022Search in Google Scholar

Endler J.A. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fish. 9: 173–190. DOI: 10.1007/BF00690861Search in Google Scholar

Endler J.A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41: 315–352. DOI: 10.1111/j.1095-8312.1990.tb00839.xSearch in Google Scholar

Getty T. 2002. Signaling health versus parasites. Am. Nat. 159 (4): 363–371. DOI: 10.1086/338992.Search in Google Scholar

Grafen A. 1990. Biological signals as handicaps. J. Theor. Biol. 144 (4): 517–546. DOI: 10.1016/S0022-5193(05)80088-8Search in Google Scholar

Grether G.F., Hudon J. & Endler J.A. 2001. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc. R. Soc. B 268: 1245–1253. DOI: 10.1098/rspb.2001.1624Search in Google Scholar PubMed PubMed Central

Guilford T. & Dawkins M.S. 1991. Receiver psychology and the evolution of animal signals. Anim. Behav. 42 (1): 1–14. DOI: 10.1016/S0003-3472(05)80600-1Search in Google Scholar

Hartley R.C. & Kennedy M.W. 2004. Are carotenoids a red herring in sexual display? Trends Ecol. Evol. 19 (7): 353–354. DOI: 10.1016/j.tree.2004.04.002Search in Google Scholar PubMed

Higham J.P. 2013. How does honest costly signaling work? Behav. Ecol. 25: 8–11. DOI: 10.1093/beheco/art097Search in Google Scholar

Hothorn T., Bretz F. & Westfall, P. 2008. Simultaneous inference in general parametric models. Biom. J. 50 (3): 346–363. DOI: 10.1002/bimj.200810425.Search in Google Scholar PubMed

Johnsson J.I. & Bohlin T. 2006. The cost of catching up: increased winter mortality following structural growth compensation in the wild. Proc. R. Soc. B 273: 1281–1286. DOI: 10.1098/rspb.2005.3437Search in Google Scholar PubMed PubMed Central

Kikuchi D.W., Seymoure B.M. & Pfennig D.W. 2014. Mimicry’s palette: widespread use of conserved pigments in the aposematic signals of snakes. Evol. Dev. 16 (2): 61–67. DOI: 10.1111/ede.12064.Search in Google Scholar PubMed

Kopena R., López P. & Martín J. 2014. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav. Ecol. Sociobiol. 68 (4): 571–581. DOI: 10.1007/s00265-013-1672-9Search in Google Scholar

Kopena R., Martín J., López P. & Herczeg G. 2011. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6: e19410. DOI: 10.1371/journal.pone.0019410Search in Google Scholar PubMed PubMed Central

Kottler V.A., Koch I., Flötenmeyer M., Hashimoto H., Weigel D. & Dreyer C. 2014. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS One 9: e85647. DOI: 10.1371/journal.pone.0019410Search in Google Scholar

Kozlowski J. & Teriokhin A.T. 1999. Allocation of energy between growth and reproduction: the Pontryagin Maximum Principle solution for the case of age-and season-dependent mortality. Evol. Ecol. Res. 1: 423–441.Search in Google Scholar

Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-30. http://CRAN.R-project.org/package=lmerTest (accessed 30.05.2016)10.18637/jss.v082.i13Search in Google Scholar

López P. & Martín J. 2005. Intersexual differences in chemical composition of precloacal gland secretions of the amphisbaenian, Blanus cinereus. J. Chem. Ecol. 31 (12): 2913–2921. DOI: 10.1007/s10886-005-8403-2Search in Google Scholar PubMed

Love K. & Love B. 2012. Corn Snakes: The Comprehensive Owner’s Guide. I-5 Press, Irvine, CA, 234 pp. ISBN-13: 9781882770700Search in Google Scholar

Lozano G.A. 1994. Carotenoids, parasites, and sexual selection. Oikos 70 (2): 309–311.10.2307/3545643Search in Google Scholar

Maia J.P., Harris D.J., Carranza S. & Gómez-Díaz E. 2014. A comparison of multiple methods for estimating parasitemia of haemogregarine hemoparasites (Apicomplexa: Adeleorina) and its applications for studying infection in natural populations. PLoS One 9: e95010. DOI: 10.1371/journal.pone.0095010Search in Google Scholar PubMed PubMed Central

Martín J. & López P. 2009. Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behav. Ecol. Sociobiol. 63 (12): 1743–1755. DOI: 10.1007/s00265-009-0794-6Search in Google Scholar

Martín J. & López P. 2014. Pheromones and chemical communication in lizards, Chapter 3, pp. 43–77. In: Rheubert J.L., Siegel D.S. & Trauth S.E. (eds), The Reproductive Biology and Phylogeny of Lizards and Tuatara, CRC Press, Boca Raton, 760 pp. ISBN: 978-1-4665-7986-6Search in Google Scholar

Maynard Smith J. & Harper D. 2003. Animal Signals. Oxford University Press, New York, 176 pp. ISBN: 9780198526858Search in Google Scholar

McGraw K.J. 2005. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim. Behav. 69 (4): 757–764. DOI: 10.1016/j.anbehav.2004.06.022Search in Google Scholar

Megía-Palma R., Martínez J. & Merino S. 2016. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species. Naturwissenschaften 103 (7-8): 1–10. DOI: 10.1007/s00114-016-1378-8Search in Google Scholar PubMed

Molnár O., Bajer K., Mészáros B., Török J. & Herczeg G. 2013. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100: 551–558. DOI: 10.1007/s00114-013-1051-4Search in Google Scholar PubMed

Moreno-Rueda G. 2010. Experimental test of a trade-off between moult and immune response in house sparrows Passer domesticus. J. Evol. Biol. 23 (10): 2229–2237. DOI: 10.1111/j.1420-9101.2010.02090.x.Search in Google Scholar PubMed

Olsson M., Stuart-Fox D. & Ballen C. 2013. Genetics and evolution of colour patterns in reptiles. Semin. Cel. Dev. Biol. 24 (6-7): 529–541. DOI: 10.1016/j.semcdb.2013.04.001.Search in Google Scholar PubMed

Pérez i de Lanuza G., Carazo P. & Font E. 2014. Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Anim. Behav. 90: 73–81. DOI: 10.1016/j.anbehav.2014.01.017Search in Google Scholar

Polnaszek T.J. & Stephens D.W. 2015. Why are signals reliable? Honesty depends on costs, sometimes. Anim. Behav. 110: e13-e16. DOI: 10.1016/j.anbehav.2015.09.011Search in Google Scholar

R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.orgSearch in Google Scholar

Royle N.J., Metcalfe N.B. & Lindström J. 2006. Sexual selection, growth compensation and fast-start swimming performance in Green Swordtails, Xiphophorus helleri. Funct. Ecol. 20 (4): 662–669. DOI: 10.1111/j.1365-2435.2006.01147.xSearch in Google Scholar

Royle N.J., Orledge J.M. & Blount J.D. 2015. Early Life-History Effects, Oxidative Stress, and the Evolution and Expression of Animal Signals, pp. 11–46. DOI: 10.1002/9781118966624.ch2. In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0Search in Google Scholar

Ruxton G.D. & Schaefer H.M. 2011. Resolving current disagreements and ambiguities in the terminology of animal communication. J. Evol. Biol. 24 (12): 2574–2585. DOI: 10.1111/j.1420-9101.2011.02386.xSearch in Google Scholar PubMed

von Schantz T., Bensch S., Grahn M., Hasselquist D. & Wittzell H. 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266: 1–12. DOI: 10.1098/rspb.1999.0597Search in Google Scholar PubMed PubMed Central

San-Jose L.M., Granado-Lorencio F., Sinervo B. & Fitze P.S. 2013. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am. Nat. 181 (3): 396–409. DOI: 10.1086/669159Search in Google Scholar PubMed

Schielzeth H., 2010. Simple means to improve the interpretability of regression coefficients. Met. Ecol. Evol. 1 (2): 103–113. DOI: 10.1111/j.2041-210X.2010.00012.xSearch in Google Scholar

Schielzeth H. & Forstmeier W. 2009. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20 (2): 416–420. DOI: 10.1093/beheco/arn145Search in Google Scholar PubMed PubMed Central

Searcy W.A. & Nowicki S. 2005. The Evolution of Animal Communication: Reliability and Deception in Signalling Systems. Princeton University Press, Princeton, NJ, 288 pp. ISBN: 9780691070957Search in Google Scholar

Simons M.J., Cohen A.A. & Verhulst S. 2012. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7: e43088. DOI: 10.1371/ journal.pone.0043088Search in Google Scholar

Smith G.C. 1976. Ecological energetics of three species of ectothermic vertebrates. Ecology 57: 252–264. DOI: 10.2307/ 1934814Search in Google Scholar

Steffen J.E. & McGraw K.J. 2007. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species. Comp. Biochem. Physiol. B Mol. Biol. 146: 42–46. DOI:10.1016/j.cbpb.2006.08.017Search in Google Scholar PubMed

Stevens M. 2013. Sensory Ecology, Behaviour, and Evolution. Oxford University Press, Glasgow, 464 pp. ISBN: 978019960178310.1093/acprof:oso/9780199601776.001.0001Search in Google Scholar

Summers K., Speed M.P., Blount J.D. & Stuckert A.M.M. 2015. Are aposematic signals honest? A review. J. Evol. Biol. 28:1583–1599. DOI: 10.1111/jeb.12676Search in Google Scholar PubMed

Svensson P.A. & Wong B.B.M. 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148: 131–189. DOI: 10.1163/000579510X548673Search in Google Scholar

Számadó S. 2011. The cost of honesty and the fallacy of the handicap principle. Anim. Behav. 81 (1): 3–10. DOI: 10.1016/j.anbehav.2010.08.022Search in Google Scholar

Számadó S. & Penn D.J. 2015. Why does costly signalling evolve? Challenges with testing the handicap hypothesis. Anim. Behav. 110: e9–e12. DOI: 10.1016/j.anbehav.2015.06.005Search in Google Scholar PubMed PubMed Central

Ullate-Agote A., Milinkovitch M.C. & Tzika A.C. 2015. The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. Int. J. Dev. Biol. 58 (10-12): 881–888. DOI: 10.1387/ijdb.150060at.Search in Google Scholar PubMed

Václav R., Prokop P. & Fekiac V. 2007. Expression of breeding coloration in European Green Lizards (Lacerta viridis): variation with morphology and tick infestation. Can. J. Zool. 85: 1199–1206. DOI: 10.1139/Z07-102Search in Google Scholar

Vágási C.I., Pap P.L., Vincze O., Benkő Z., Marton A. & Barta Z. 2012. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PLoS One 7: e40651. DOI: 10.1371/journal.pone.0040651Search in Google Scholar PubMed PubMed Central

Vitt L.J. & Caldwell J.P. 2009. Herpethology, 3rd ed. An Introductory Biology of Amphibians and Reptiles. Academic Press, Burlington, MA, 697 pp. ISBN: 978-0-12-374346-6Search in Google Scholar

Werner E.E. & Gilliam J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15 (1): 393–425. DOI: 10.1146/annurev.es.15. 110184.002141Search in Google Scholar

Whiting M.J., Stuart-Fox D.M., O’Connor D., Firth D., Bennett N.C. & Blomberg S.P. 2006. Ultraviolet signals ultraaggression in a lizard. Anim. Behav. 72 (2): e353–e363. DOI: 10.1016/j.anbehav.2005.10.018Search in Google Scholar

Wilgers D.J. & Hebets E.A. 2014. Functional approach to condition, pp. 229–252. DOI: 10.1002/9781118966624.ch9. In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0Search in Google Scholar

Zahavi A. 1975. Mate selection – a selection for a handicap. J. Theor. Biol. 53 (1): 205–214. DOI: 10.1016/0022-5193(75)90111-3Search in Google Scholar

Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A. & Smith G.M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY, 574 pp. DOI: 10.1007/978-0-387-87458-6. ISBN: 978-0-387-87457-9Search in Google Scholar

Received: 2016-10-2
Accepted: 2017-1-4
Published Online: 2017-2-18
Published in Print: 2017-1-1

©2017 Institute of Zoology, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Potential Ebola drug targets – filling the gap: a critical step forward towards the design and discovery of potential drugs
  3. Botany
  4. Comparative seed micromorphology and morphometry of some orchid species (Orchidaceae) belong to the related Anacamptis, Orchis and Neotinea genera
  5. Botany
  6. The current state of steppe perennial plants populations: A case study on Iris pumila
  7. Botany
  8. Expression, activity of phenylalanine-ammonia-lyase and accumulation of phenolic compounds in Lotus japonicus under salt stress
  9. Botany
  10. Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton
  11. Zoology
  12. Distribution modelling of four scelionid egg parasitoids of green stink bugs (Hemiptera: Pentatomidae)
  13. Zoology
  14. The rediscovery of Orthoceratium lacustre (Scopoli, 1763) (Diptera: Dolichopodidae) in Belgium, with data on its ecology and distribution in the Palaearctic region
  15. Zoology
  16. New records of long-legged flies (Diptera: Dolichopodidae) from Armenia, with description of Campsicnemus armeniacus sp. n.
  17. Zoology
  18. Redescription of male Sarcophaga disputata (Diptera: Sarcophagidae) using light and electron microscopy
  19. Zoology
  20. Effects of food and thermal regimes on body condition indices and skin colouration in corn snakes
  21. Zoology
  22. Effectiveness of non-antibiotic stimulators in Japanese quail diet: Gender comparison and economical annex
  23. Cellular and Molecular Biology
  24. What we know about the cellular microenvironment of clinically healthy human gingiva? An immunohistochemical and histological study
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0008/html?lang=en
Scroll to top button