Changes in food availability mediate the effects of temperature on growth, metamorphosis and survival in endangered yellow spotted mountain newt: implications for captive breeding programs
Abstract
The effects of temperature and food levels on body size, growth rate, time to metamorphosis and survival were studied in larval and post-metamorphic juvenile endangered yellow spotted mountain newts Neurergus microspilotus (Caudata: Salamandridae), which were hatched and reared in a captive breeding facility. We designed a 2 × 3 factorial experiment in which larvae were raised either at high and low temperature (15°C and 18°C) of conspecifics and fed either a high, medium and low level of food. The experimental results showed that growth and development rates of N. microspilotus were influenced by interaction of temperature and food levels. Larvae raised at the high food level and high temperature exhibited earlier metamorphosis and the greatest snout to vent length (SVL) compared with individuals raised at relatively low food level and low temperature. Over the experimental period, larval growth rate was highest and survival lowest at the high temperature. Our data suggest that in larvae grown at relatively low temperature, the metamorphosis time was significantly longer compared with individuals raised at relatively high temperature. At both low and high temperature, larval growth rates increased with increasing food levels, and the increase was fastest at high food level compared to medium and low food regimes. Larvae exhibited the greatest mean growth rate for SVL (0.41 mm/days) at high food level and high temperature. Information obtained from current experiment could improve the productivity of newts in captive breeding facilities to ensure the release of adequate numbers of individuals for reintroduction programs.
References
Alford R.A. & Harris R.N. 1988. Effects of larval growth history on anuran metamorphosis. Am. Nat. 131 (1): 91–106. DOI: 10.1086/28477510.1086/284775Search in Google Scholar
Álvarez D. & Nicieza A.G. 2002a. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16 (5): 640–648. DOI: 10.1046/j.13652435.2002.00658.x10.1046/j.13652435.2002.00658.xSearch in Google Scholar
Álvarez D. & Nicieza A.G. 2002b. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia 131 (2): 186–195. DOI: 10.1007/s00442-002-0876-x10.1007/s00442-002-0876-xSearch in Google Scholar
Armstrong D.P. & Seddon P.J. 2008. Directions in reintroduction biology. Trends. Ecol. Evol. 23 (1): 20–25. DOI: 10.1016/j.tree.2007.10.00310.1016/j.tree.2007.10.003Search in Google Scholar
Bancroft B.A., Baker N.J., Searle C.L., Garcia T.S. & Blaustein A.R. 2008. Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behav. Ecol. 19 (4): 879–886. DOI: 10.1093/beheco/arn04410.1093/beheco/arn044Search in Google Scholar
Beachy C.K. 1995. Effects of larval growth history on metamorphosis in a stream-dwelling salamander (Desmognathus ochrophaeus). J. Herpetol. 29 (3): 375–382. DOI: 10.2307/ 156498710.2307/ 1564987Search in Google Scholar
Bellakhal M., Neveu A., Fartouna-Bellakhal M., Missaoui H. & Aleya L. 2014. Effects of temperature, density and food quality on larval growth and metamorphosis in the north African green frog Pelophylax saharicus. J. Therm. Biol. 45: 81–86. DOI: 10.1016/j.jtherbio.2014.08.00610.1016/j.jtherbio.2014.08.006Search in Google Scholar
Blaustein A.R., Walls S.C., Bancroft B.A., Lawler J.J., Searle C.L. & Gervasi S.S. 2010. Direct and indirect effects of climate change on amphibian populations. Diversity 2(2): 281–313. DOI: 10.3390/d202028110.3390/d2020281Search in Google Scholar
Blaustein A.R., Hatch A., Belden L.K. & Wildy E.R. 2001. Influence of abiotic and biotic factors on amphibians in ephemeral ponds with special reference to long-toed salamanders (Ambystoma macrodactylum). Israel J. Zool. 47 (4): 333–346. DOI: 10.1560/96FA-AAL4-NECX-KEEY10.1560/96FA-AAL4-NECX-KEEYSearch in Google Scholar
Browne R.K. & Edwards D.L. 2003. The effect of temperature on the growth and development of green and golden bell frogs (Litoria aurea). J. Therm. Biol. 28 (4): 295–299. DOI: 10.1016/S0306-4565(03)00006-810.1016/S0306-4565(03)00006-8Search in Google Scholar
Cabrera-Guzm´an E., Crossland M.R., Brown G.P. & Shine R. 2013. Larger body size at metamorphosis enhances survival, growth and performance of Young Cane Toads (Rhinella marina). PLoS ONE 8(7): e70121. DOI: 10.1371/journal.pone.007012110.1371/journal.pone.0070121Search in Google Scholar PubMed PubMed Central
Canessa S., Hunter D., McFadden M., Marantelli G. & McCarthy M.A. 2014. Optimal release strategies for cost-effective reintroductions. J. Appl. Ecol. 51 (4): 1107–1115. DOI: 10.1111/1365-2664.1225310.1111/1365-2664.12253Search in Google Scholar
Castańeda L.E., Sabat P., Gonzalez S.P. & Nespolo R.F. 2006. Digestive plasticity in tadpoles of the Chilean giant frog (Caudiverbera caudiverbera): factorial effects of diet and temperature. Physiol. Biochem. Zool. 79 (5): 919–926. DOI: 10.1086/50600610.1086/506006Search in Google Scholar PubMed
Cothran R.D., Gervasi S.S., Murray C., French B.J., Bradley P.W., Urbina J., Blaustein A.R. & Relyea R.A. 2015. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis. Conserv.Physiol. 3 (1): cov005. DOI: 10.1093/ conphys/cov00510.1093/ conphys/cov005Search in Google Scholar
Courtney Jones S.K., Munn A.J., Penman T.D. & Byrne P.G. 2015. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3 (1): cov029. DOI: 10.1093/ conphys/cov02910.1093/ conphys/cov029Search in Google Scholar
Crump M.L. 1981. Energy accumulation and amphibian metamorphosis. Oecologia. 49(2): 167–169. DOI: 10.1007/BF00 34918410.1007/BF00 349184Search in Google Scholar
Dugas M.B., Yeager J. & Richards-Zawacki C.L. 2013. Carotenoid supplementation enhances reproductive success in captive strawberry poison frogs (Oophaga pumilio). Zoo Biol. 32 (6): 655–658. DOI: 10.1002/zoo.2110210.1002/zoo.21102Search in Google Scholar PubMed
Dziminski M.A. & Roberts J.D. 2006. Fitness consequences of variable maternal provisioning in Quacking Frogs (Crinia georgiana). J. Evol. Biol. 19 (1): 144–155. DOI: 10.1111/j. 1420-9101.2005.00978.x10.1111/j.1420-9101.2005.00978.xSearch in Google Scholar PubMed
Dziminski M.A., Roberts J.D. & Simmons L.W. 2008. Fitness consequences of parental compability in the frog Crinia georgiana. Evolution 62 (4): 879–886. DOI: 10.1111/j.15585646.2008.00328.x10.1111/j.15585646.2008.00328.xSearch in Google Scholar
Earnhardt J.M., Thompson S.D. & Marhevsky E.A. 2001. Interactions of target population size, population parameters, and program management on viability of captive populations. Zoo Biol. 20 (3): 169–183. DOI: 10.1002/zoo.101810.1002/zoo.1018Search in Google Scholar
Enriquez-Urzelai U., San Sebastián O., Garriga N. & Llorente G. 2013. Food availability determines the response to pond desiccation in anuran tadpoles. Oecologia 173 (1): 117–127. DOI: 10.1007/s00442-013-2596-910.1007/s00442-013-2596-9Search in Google Scholar
Fischer J. & Lindenmayer D.B. 2000. An assessment of the published results of animal relocations. Biol. Conserv. 96 (1): 1−11. DOI: 10.1016/S0006-3207(00)00048-310.1016/S0006-3207(00)00048-3Search in Google Scholar
Frankham R., Ballou J.D. & Briscoe D.A. 2010. Introduction to Conservation Genetics. 2nd Edn, University Press, Cambridge, 644 pp. ISBN: 978052170271310.1017/CBO9780511809002Search in Google Scholar
Gascon C., Collins J.P., Moore R.D., Church D.R, McKay J.E. & Mendelson J.R. (eds).d 2007. Amphibian Conservation Action Plan. Proceedings: IUCN/SSC Amphibian Conservation Summit 2005, Amphibian Specialist Group, Gland, Switzerland, and Cambridge, United Kingdom, 64 pp. ISBN: 978-28317-1008-2Search in Google Scholar
Goncalves A., Leigh-Brown S., Thybert D., Stefflova K., Turro E., Flicek P., Brazma A., Odom D.T. & Marioni J.C. 2012. Extensive compensatory cis-trans regulation in the evolution of mouse gene expression. Genome. Res. 22 (12): 2376–2384. DOI: 10.1101/gr.142281.112.10.1101/gr.142281.112Search in Google Scholar
Hickerson C.M., Barker E.L. & Beachy C.K. 2005. Determinants of metamorphic timing in the black bellied salamander, Desmognathus quadramaculatus. Southeast. Nat. Southeastern Naturalist 4: 33–50. DOI: 10.1656/1528-7092(2005)004 [0033:DOMTIT]2.0.CO;210.1656/1528-7092(2005)004 [0033:DOMTIT]2.0.CO;2Search in Google Scholar
Hulbert A.J., Pamplona R., Buffenstein R. & Buttemer W.A. 2007. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87 (4): 1175–1213. DOI: 10.1152/physrev.00047.200610.1152/physrev.00047.2006Search in Google Scholar
Inatsuchi A., Yamato S. & Yusa Y. 2010. Effects of temperature and food availability on growth and reproduction in the neustonic pedunculated barnacle Lepas anserifera. Mar. Biol. 157 (4): 899–905. DOI: 10.1007/s00227-009-1373-010.1007/s00227-009-1373-0Search in Google Scholar
IUCN (International Union for Conservation of Nature) 2011. IUCN Red List of Threatened Species, version 2011.1 www. iucnredlist.org (accessed 01.06.2013).Search in Google Scholar
Kohmatsu Y., Nakano S. & Yamamura N. 2001. Effects of head shape variation on growth, metamorphosis and survivorship in larval salamanders (Hynobius retardatus). Ecol. Res. 16 (1): 73–83. DOI: 10.1046/j.1440-1703.2001.00373.x10.1046/j.1440-1703.2001.00373.xSearch in Google Scholar
Lardner B. 2000. Morphological and life history responses to predators in larvae of seven anurans. Oikos 88 (1): 169–180. DOI: 10.1034/j.1600-0706.2000.880119.x10.1034/j.1600-0706.2000.880119.xSearch in Google Scholar
Laurila A. & Kujasalo J. 1999. Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J. Anim. Ecol. 68 (6): 1123–1132. DOI: 10.1046/j.1365-2656.1999.00354.x10.1046/j.1365-2656.1999.00354.xSearch in Google Scholar
Leips J. & Travis J. 1994. Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75 (5): 1345– 1356. DOI: 10.2307/193745910.2307/1937459Search in Google Scholar
Loman J. 2002. Temperature genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field. J. Zool. 258 (1): 115–129. DOI: 10.1017/S095283690200125510.1017/S0952836902001255Search in Google Scholar
Maciel T.A. & Junca F.A. 2009. Effects of temperature and volume of water on the growth and development of tadpoles of Pleurodema diplolister and Rhinella granulosa (Amphibia: Anura). Zoologia, (Curitiba, Impr.) 26 (3): 413–418. DOI: 10.1590/S1984-4670200900030000510.1590/S1984-46702009000300005Search in Google Scholar
McLeod I.M., Rummer J.L., Clark T.D., Jones G.P., McCormick M.I., Wenger A.S. & Munday P.L. 2013. Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability. Conserv. Physiol. 1 (1): cot024. DOI: 10.1093/conphys/cot02410.1093/conphys/cot024Search in Google Scholar
McWilliams D.A. 2008. Nutrition Recommendations for some Captive Amphibian Species (Anura and Caudata). Can. Assoc. ZooAquariums Nutr. Advis.Res.Group,34pp. http://www.amphibianark.org/pdf/Husbandry/amphibian %20nutrition%20report%20CAZA%202008.pdf">http://www.amphibianark.org/pdf/Husbandry/amphibian %20nutrition%20report%20CAZA%202008.pdf (accessed 01. 09.2015)Search in Google Scholar
Morand A., Joly P. & Grolet O. 1997. Phenotypic variation in metamorphosis in five anuran species along a gradient of stream influence. Variabilité phénotypique de la métamorphose chez cinq espčces d’anoures en fonction d’un gradient d’influence fluviale. C. R. Acad. Sci. Sciences de la Vie / Life Sciences 320 (8): 645–652. DOI: 10.1016/S07644469(97)85698-310.1016/S07644469(97)85698-3Search in Google Scholar
Morey S.R. & Reznick D.N. 2000. A comparative analysis of plasticity in larval development in three species of spade-foot toads. Ecology 81 (6): 1736–1749. DOI: 10.1890/00129658(2000)081[1736:ACAOPI]2.0.CO;210.1890/00129658(2000)081[1736:ACAOPI]2.0.CO;2Search in Google Scholar
Newman R.A. 1994. Effects of changing density and food level on metamorphosis of the spadefoot toad Scaphiopus couchii. Ecology 75 (4): 1085–1096. DOI: 10.2307/193943210.2307/1939432Search in Google Scholar
Newman R.A. 1998. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115 (1): 9–16. DOI: 10.1007/s00442005048510.1007/s004420050485Search in Google Scholar
O’Connor M.I., Bruno J.F., Gaines S.D., Halpern B.S., Lester S.E., Kinlan B.P. & Weiss J.M. 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA 104 (4): 1266–1271. DOI: 10.1073/pnas.060342210410.1073/pnas.0603422104Search in Google Scholar
Ogilvy V., Preziosi R.F. & Fidgett A.L. 2012. A brighter future for frogs? The influence of carotenoids on the health, development and reproductive success of the red-eye tree frog. Anim. Conserv. 15 (5): 480–488. DOI: 10.1111/j.14691795.2012.00536.x10.1111/j.14691795.2012.00536.xSearch in Google Scholar
O’Laughlin B.E. & Harris R.N. 2000. Models of metamorphic timing: an experimental evaluation with pond-dwelling salamander Hemidactylium scutatum (Caudata: Pletodonthidae). Oecologia 124 (3): 343–350. DOI: 10.1007/s004420000 39210.1007/s004420000 392Search in Google Scholar
Pandian T.J. & Marian M.P. 1985. Predicting anuran metamorphosis and energetics. Physiol. Zool. 58 (5): 538–552. DOI: 10.1086/physzool.58.5.3015858110.1086/physzool.58.5.30158581Search in Google Scholar
Peck M.A., Huebert K.B. & Llopiz J.K. 2012. Intrinsic and extrinsic factors driving match-mismatch dynamics during the early life history of marine fishes. Adv. Ecol. Res. 47: 177–302. DOI: 10.1016/B978-0-12-398315-2.00003-X10.1016/B978-0-12-398315-2.00003-XSearch in Google Scholar
Randall C.J. & Szmant A.M. 2009. Elevated temperature affects development, survivorship, and settlement of the Elkhorn Coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217 (3): 269–282. PMID: 2004075110.1086/BBLv217n3p269Search in Google Scholar PubMed
Rose C.S. 2005. Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends Ecol. Evol. 20 (3): 129–135. DOI: 10.1016/j.tree.2005.01.00510.1016/j.tree.2005.01.005Search in Google Scholar PubMed
Sanuy D., Oromí N. & Galofré A. 2008. Effects of temperature on embryonic and larval development and growth in the natterjack toad (Bufo calamita) in a semiarid zone. Anim. Biodivers. Conserv. 31 (1): 41–46.Search in Google Scholar
Sharifi M. & Assadian S. 2004. Distribution and conservation status of Neurergus microspilotus (Caudata: Salamandridae) in western Iran. Asiat. Herpetol. Res. 10: 224–229.Search in Google Scholar
Sharifi M., Bafti S., Papenfuss T., Anderson S., Kuzmin S. & Rastegar-Pouyani N. 2009. Neurergus microspilotus. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org> (accessed 23.04.2013)Search in Google Scholar
Sharifi M. & Vaissi S. 2014. Captive breeding and trail reintroduction of the endangered yellow spotted mountain newt Neurergus microspilotus (Caudata: Salamandridae) in western Iran. Endang. Spec. Res. 23 (2): 159–166. DOI: 10.3354/esr0055210.3354/esr00552Search in Google Scholar
Sheldon B.C., Arponen H., Laurila A., Crochet P.A. & Merilä J. 2003. Sire coloration influences off spring survival under predation risk in the moor frog. J. Evol. Biol. 16 (6): 1288– 1295. DOI: 10.1046/j.1420-9101.2003.00606.x10.1046/j.1420-9101.2003.00606.xSearch in Google Scholar PubMed
Smith G. D., Hopkins G.R., Mohammadi S., Skinner H.M., Hansen T., Brodie E.D. & French S.S. 2015. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa). J. Therm. Biol. 51: 89–95. DOI: 10.1016/j.jtherbio.2015.03.01010.1016/j.jtherbio.2015.03.010Search in Google Scholar PubMed
Smith D.C. 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68 (2): 344–350. DOI: 10.2307/193926510.2307/1939265Search in Google Scholar
Smith-Gill S.J. & Berven K.A. 1979. Predicting amphibian metamorphosis. Am. Nat. 113 (4): 563–585. DOI: 10.1086/28341310.1086/283413Search in Google Scholar
Stahlberg F., Olsson M. & Uller T. 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. J. Evol. Biol. 14 (5): 755–762. DOI: 10.1046/j.1420-9101.2001.00333.x10.1046/j.1420-9101.2001.00333.xSearch in Google Scholar
Stuart N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S.L., Fischman D.L. & Waller R. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306 (5702): 1783–1786. DOI: 10.1126/science.110353810.1126/science.1103538Search in Google Scholar PubMed
Takahashi M., McCormick M.I., Munday P.L. & Jones G.P. 2012. Influence of seasonal and latitudinal temperature variation on early life-history traits of a coral reef fish. Mar. Freshwater Res. 63 (10): 856–864. DOI: 10.1071/MF1127810.1071/MF11278Search in Google Scholar
Tarszisz E., Dickman C.R. & Munn A.J. 2014. Physiology in conservation translocations. Conserv. Physiol. 2 (1): cou054 DOI: 10.1093/conphys/cou05410.1093/conphys/cou054Search in Google Scholar PubMed PubMed Central
Tejedo M. & Reques R. 1994. Plasticity in metamorphic traits of natterjack tadpoles: the interactive effects of density and pond duration. Oikos 71 (2): 295–304. DOI: 10.2307/354627810.2307/3546278Search in Google Scholar
Voss S.R. 1993. Relationship between stream order and length of larval period in the salamander Eurycea wilderae.Copeia 1993 (3): 736–742. DOI: 10.2307/144723510.2307/1447235Search in Google Scholar
Warburg M.R. 2009. Age and size at metamorphosis of half sib larvae of Salamandra infraimmaculata born in the laboratory and raised singly under three different food regimes. Belg. J. Zool. 139 (2): 156–165.Search in Google Scholar
Webb K.M. & Merrit R.W. 1987. The influence of diet on the growth of Stenonema vicarium (Walker) (Ephemeroptera: Heptageniidae). Hydrobiologia 153 (3): 253–259. DOI: 10.1007/BF0000721210.1007/BF00007212Search in Google Scholar
Wells K.D. 2007. The Ecology and Behavior of Amphibians. Chicago: University of Chicago Press, 1400 pp. ISBN: 978022689334110.7208/chicago/9780226893334.001.0001Search in Google Scholar
Werner E.E., 1986. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128 (3): 319–341. DOI: 10.1086/28456510.1086/284565Search in Google Scholar
Wilbur H.M. & Collin J.P. 1973. Ecological aspects of amphibian metamorphosis. Science 182 (4119): 1305–1314. DOI: 10.1126/science.182.4119.130510.1126/science.182.4119.1305Search in Google Scholar PubMed
Wilbur H.M. 1980. Complex life cycles. Annu. Rev. Ecol. Syst. 11: 67–93.10.1146/annurev.es.11.110180.000435Search in Google Scholar
Wildy E.L., Douglas P.C., Joseph M.K. & – Andrew R.B. 2001. The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum. Oecologia 128 (2): 202–209. DOI: 10.1007/s00442010064110.1007/s004420100641Search in Google Scholar PubMed
Zhang L., Kouba A., Wang Q., Zhao H., Jiang W., Willard S. & Zhang H. 2014. The Effect of water temperature on the growth of captive Chinese giant salamanders (Andrias davidianus) reared for reintroduction: a comparison with wild salamander body condition. Herpetologica 70 (4): 369–377. DOI: 10.1655/HERPETOLOGICA-D-14-00011R110.1655/HERPETOLOGICA-D-14-00011R1Search in Google Scholar
© 2016 Institute of Zoology, Slovak Academy of Sciences
Articles in the same Issue
- Research Article
- Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering
- Research Article
- Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review
- Research Article
- Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase
- Research Article
- New mycelial lectins from penicilli with complex carbohydrate specificity
- Research Article
- Phylogenetic analysis of Leymus (Poaceae: Triticeae) based on random amplified polymorphic DNA
- Research Article
- Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants
- Research Article
- Molecular cloning of HMW glutenin subunits from Roegneria kamoji (Poaceae: Triticeae)
- Research Article
- New faunistic and taxonomic data on oribatid mites (Acari: Oribatida) of Vietnam
- Research Article
- The genus Monoschelobates (Acari: Oribatida: Scheloribatidae)
- Research Article
- Analysis of larval antigens of Cephalopina titillator in the camel mucus for diagnosis of infestation
- Research Article
- Changes in food availability mediate the effects of temperature on growth, metamorphosis and survival in endangered yellow spotted mountain newt: implications for captive breeding programs
- Research Article
- Dependence of clutch predation rate of Eurasian reed warbler Acrocephalus scirpaceus on nesting site selection: A model study
Articles in the same Issue
- Research Article
- Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering
- Research Article
- Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review
- Research Article
- Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase
- Research Article
- New mycelial lectins from penicilli with complex carbohydrate specificity
- Research Article
- Phylogenetic analysis of Leymus (Poaceae: Triticeae) based on random amplified polymorphic DNA
- Research Article
- Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants
- Research Article
- Molecular cloning of HMW glutenin subunits from Roegneria kamoji (Poaceae: Triticeae)
- Research Article
- New faunistic and taxonomic data on oribatid mites (Acari: Oribatida) of Vietnam
- Research Article
- The genus Monoschelobates (Acari: Oribatida: Scheloribatidae)
- Research Article
- Analysis of larval antigens of Cephalopina titillator in the camel mucus for diagnosis of infestation
- Research Article
- Changes in food availability mediate the effects of temperature on growth, metamorphosis and survival in endangered yellow spotted mountain newt: implications for captive breeding programs
- Research Article
- Dependence of clutch predation rate of Eurasian reed warbler Acrocephalus scirpaceus on nesting site selection: A model study