Home Search Costs and Wage Inequality
Article
Licensed
Unlicensed Requires Authentication

Search Costs and Wage Inequality

  • Jiancai Pi EMAIL logo and Kaiqi Zhang
Published/Copyright: November 19, 2020

Abstract

This paper analyzes how search costs affect skilled-unskilled wage inequality. In the basic model, we find that an increase in skilled labor’s search costs will decrease wage inequality if the skilled labor market and the unskilled labor market are separated. In the extended model, our findings are as follows: (i) Even if there exists free entry into the unskilled labor market or the endogenous provision of public goods, an increase of search costs in the skilled labor market will decrease wage inequality; and (ii) if skilled search costs are negatively related to the skilled wage, wage inequality will be increased.

JEL Classification: J31; J64

Corresponding author: Jiancai Pi, Department of Economics, Nanjing University, Nanjing, China, E-mail:

Appendix A: The optimization problem of the production sector

We consider the optimization problem of the representative firm in the production sector. From Eqs. (1)(3) and (7), we know:

(A-1) L Y ( L s Y , L u Y , V s Y , V u Y ; λ 1 , λ 2 ) = 0 ( e r t ( ( 1 τ ) Y w s L s Y w u L u Y γ s V s Y γ u V u Y ) + λ 1 ( f s ( θ s ) V s Y δ s L s Y L ˙ s Y ) + λ 2 ( f u ( θ u ) V u Y δ u L u Y L ˙ u Y ) ) d t .

Since the firm cannot control the market tightness of the skilled labor market and the unskilled labor market, given θ s and θ u , we obtain first-order conditions as follows:

(A-2) e r t ( ( 1 τ ) Y L s Y w s ) λ 1 δ s + d λ 1 d t = 0 ,

(A-3) e r t ( ( 1 τ ) Y L u Y w u ) λ 2 δ u + d λ 2 d t = 0 ,

(A-4) e r t γ s + λ 1 f s ( θ s ) = 0 ,

(A-5) e r t γ u + λ 2 f u ( θ u ) = 0 .

From Eqs. (A-4) and (A-5), it is easy to obtain d λ 1 d t = r γ s f s ( θ s ) e r t and d λ 2 d t = r γ u f u ( θ u ) e r t . Then, it is easy to obtain the job creation functions of the production sector, i.e. ( 1 τ ) Y L s Y = w s + γ s f s ( δ s + r ) , and ( 1 τ ) Y L u Y = w u + γ u f u ( δ u + r ) .

According to the production function, we can obtain the following job creation functions:

(A-6) ( 1 τ ) λ Y = ( w s + γ s f s ( δ s + r ) ) L s Y ,

(A-7) ( 1 τ ) ( 1 λ ) Y = ( w u + γ u f u ( δ u + r ) ) L u Y .

Furthermore, similar to Zenou (2008, 2009), we can figure out the following Bellman functions:

(A-8) r I i V = γ i + f i ( θ i ) ( I i J I i V ) ,

(A-9) r I i J = ( 1 τ ) Y i w i δ i I i J ,

where i = s, u.

For Eq. (A-8), a vacancy is an asset owned by the firm. The expected return of the vacancy r I i V equals that the expected net gain f i ( θ i ) ( I i J I i V ) from this job minus the search cost γ i to fill this vacancy. Actually, we can consider it in the following sense. To fill this vacancy, the firm needs to pay the search cost γ i , and then the filled job can make a gain I i J with the opportunity cost I i V . Furthermore, the vacancy cannot directly create any gain. Thus, when the matching process is unsuccessful, the vacancy will be virtually valueless. Thus, the expected net gain is f i ( θ i ) ( I i J I i V ) ( 1 f i ( θ i ) ) × 0 γ i . For Eq. (A-9), the expected return of the job r I i J equals the net gain created by labor ( 1 τ ) Y i minus the wage to labor w i and the loss induced by the destruction of the job δ i I i J .

Due to free entry, I i V = θ i I i V = 0 . Thus, we obtain: I s J I s V = ( 1 τ ) Y s w s + θ s γ s r + δ s + θ s f s , and I u J I u V = ( 1 τ ) Y u w u + θ u γ u r + δ u + θ u f u .

Appendix B: The proof of Proposition 1

First of all, following Beladi, Chaudhuri, and Yabuuchi (2008) and Konishi, Okuno-Fujiwara, and Suzumura (1990), we consider the dynamic adjustment process as follows:

(B-1) Y ˙ = d 1 ( ( L s Y ) λ ( L u Y ) 1 λ Y ) ,

(B-2) τ ˙ = d 2 ( w s u L s u + w u u u u L u τ Y ) ,

(B-3) w ˙ s = d 3 ( ( 1 η ) E ( w s u ) + η ( ( 1 τ ) Y s + θ s γ s ) w s ) ,

(B-4) w ˙ u = d 4 ( ( 1 η ) w u u + η ( ( 1 τ ) Y u + θ u γ u ) w u ) ,

(B-5) θ ˙ s = d 5 ( ( 1 τ ) Y s w s γ s f s ( δ s + r ) ) ,

(B-6) θ ˙ u = d 6 ( ( 1 τ ) Y u w u γ u f u ( δ u + r ) ) ,

(B-7) u ˙ s = d 7 ( δ s ( 1 u s ) u s θ s f s ) ,

(B-8) u ˙ u = d 8 ( δ u ( 1 u u ) u u θ u f u ) ,

where d i  > 0 (i = 1, … , 8) denotes the adjustment speed and x ˙  = dx/dt.

Thus, Eqs. (B-1)(B-8), we can get the following Jacobi matrix:

Γ = [ d 1 0 0 0 0 0 d 1 λ Y 1 u s d 1 ( 1 λ ) Y 1 u u d 2 τ d 2 Y 0 0 0 0 d 2 w s u L s u u s d 2 ( w u u L u + w s u L s u u u ) d 3 η ( 1 τ ) λ ( 1 u s ) L s d 3 η λ Y ( 1 u s ) L s d 3 d 3 ( 1 η ) E ( w s u ) w u d 3 η γ s 0 η ( 1 τ ) λ Y ( 1 u s ) 2 L s d 3 ( 1 η ) E ( w s u ) u u d 4 η ( 1 τ ) ( 1 λ ) L u Y d 4 η ( 1 λ ) Y L u Y 0 d 4 0 d 4 η γ u d 4 η ( 1 τ ) ( 1 λ ) Y ( L u Y ) 2 L u Y u s d 4 η ( 1 τ ) ( 1 λ ) Y ( 1 u u ) L u Y d 5 λ ( 1 τ ) ( 1 u s ) L s d 5 λ Y ( 1 u s ) L s d 5 0 d 5 ( δ s + r ) f s γ s f s 2 0 d 5 ( w s + ( δ s + r ) γ s f s ) 1 1 u s 0 d 6 ( 1 λ ) ( 1 τ ) L u Y d 6 ( 1 λ ) Y L u Y 0 d 6 0 d 6 ( δ u + r ) f u γ u f u 2 d 6 ( 1 λ ) ( 1 τ ) Y ( L u Y ) 2 L u Y u s d 6 ( w u + ( δ u + r ) γ u f u ) 1 1 u u 0 0 0 0 d 7 u s ( f s + θ s f s ) 0 d 7 ( δ s + θ s f s ) 0 0 0 0 0 0 d 8 u u ( f u + θ u f u ) 0 d 8 ( δ u + θ u f u ) ] .

Then, we know | Γ | = L u Y ( 1 u s ) L s i = 1 8 d i | J | > 0 . When the system is stable, the signs of coefficient matrices in Section 2, 3, and 5 are positive. Thus, | J | = u s ( f s + θ s f s ) ( 1 η ) λ Y ( 1 η ) ( 1 λ ) u u ( f u + θ u f u ) [ ( ( 1 τ ) Y 1 u s + δ s + θ s f s u s ( f s + θ s f s ) ( η ( δ s + r ) f s f s 2 ) γ s ( 1 u s ) L s ( 1 η ) λ ( w s u L s + λ Y 1 u s ) ) ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f δ u + θ u f u u u ( f u + θ u f u ) ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ( w u u L u + ( 1 λ ) Y 1 u u ) ) ( w s u L s + λ Y 1 u s ) ( w u u L u + ( 1 λ ) Y 1 u u ) ] > 0, which implies that ρ s + ρ u < 1 , where ρ s = ( w s u L s + λ Y 1 u s ) / ( ( 1 τ ) Y 1 u s + δ s + θ s f s u s ( f s + θ s f s ) ( σ η ( 1 + σ η ) ( δ s + r ) f s f s 2 ) γ s ( 1 u s ) L s λ ) , ρ u = ( w u u L u + ( 1 λ ) Y 1 u u ) / ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( σ η ( 1 + σ η ) δ u + r f u 2 f u ) γ u ( 1 u u ) L u 1 λ ) , and σ η = η 1 η .

According to Eq. (20), we can obtain the following equations:

(B-9) Y γ s = 1 | J | ( δ s + r f s + η θ s ) ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) Y 2 × ( λ ( δ u + θ u f u ) ( 1 u s ) u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u + ( 1 η ) ( 1 λ ) ( 1 u s ) ( 1 u u ) ( ( 1 λ ) w s u ( 1 u s ) L s + λ ( 1 τ ) Y λ w u u ( 1 u u ) L u ) ) < 0 ,

(B-10) τ γ s = 1 | J | ( δ s + r f s + η θ s ) ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) × ( ( w s u L s + λ Y τ 1 u s ) δ u + θ u f u u u ( f u + θ u f s ) ( η ( δ u + r ) f s f u 2 ) γ u ( 1 u u ) L u + λ ( 1 λ ) ( 1 τ ) ( 1 η ) ( 1 u s ) ( 1 u u ) ( w s u ( 1 u s ) L s + w u u ( 1 u u ) L u + τ Y ) ) > 0 ,

(B-11) w s γ s = 1 | J | η ( θ s + δ s + r f s ) u u ( f u + θ u f u ) ( 1 η ) ( 1 λ ) Y u s ( f s + θ s f s ) λ × [ ( ( 1 τ ) Y 1 u u ( w u u L u + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) ( ( δ s + θ s f s u s ( δ s + θ s f s + r ) δ s + r f s γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s ) + ( w s u L s + λ Y 1 u s ) ) + ( w s u L s + λ Y 1 u s ) ( w u u L u + ( 1 λ ) Y 1 u u ) ] < 0 ,

(B-12) w u γ s = 1 | J | ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( 1 λ ) Y ( λ Y 1 u s + w s u L s ) ( δ s + r f s + η θ s ) η γ u ( δ u + θ u f u ) u u ( f u + θ u f u ) ( 1 f u f u δ u + r f u ) < 0 ,

(B-13) u s γ s = 1 | J | ( η θ s + δ s + r f s ) ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) Y ( 1 η ) ( 1 λ ) ( ( 1 τ ) Y 1 u u ( 1 λ ) Y 1 u u w u u L u + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) > 0 ,

(B-14) u u γ s = 1 | J | u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( δ s + r f s + η θ s ) ( 1 u s ) L s Y ( 1 η ) ( 1 λ ) ( w s u L s + λ Y 1 u s ) > 0 .

We can easily obtain that the signs of τ γ s , u s γ s , and u u γ s are positive and the signs of Y γ s , w s γ s , w u γ s , θ s γ s , and θ u γ s are negative, which implies that when skilled search costs increase, the output of the economy and the unskilled wage rate will decrease with a higher tax rate and a higher unemployment rate in the labor market.

From Eqs. (B-11) and (B-12), we know:

( w s w u ) γ s = 1 | J | u u ( f u + θ u f u ) u s ( f s + θ s f s ) ( 1 λ ) Y η × [ ( 1 η ) ( θ s + δ s + r f s ) ( ( 1 τ ) λ Y 1 u s ( δ s + θ s f s ) γ s u s ( 1 u s ) L s δ s + r f s 2 θ s + δ s + r f s λ ( w s u L s + λ Y 1 u s ) ) ( ( 1 τ ) Y 1 u u ( w u u L u + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) λ ( 1 η ) ( θ s + δ s + r f s ) ( w u u L u + ( 1 λ ) Y 1 u u ) ( w s u L s + λ Y 1 u s ) + ( 1 u s ) L s ( λ Y 1 u s + w s u L s ) ( δ s + r f s + η θ s ) γ u ( δ u + θ u f u ) u u ( f u + θ u f u ) ( 1 ( δ u + r ) f u f u 2 ) ] ,

When | M R T S L s L u | = Y s Y u > ( δ s + r f s + η θ s ) ( 1 ( δ u + r ) f u f u 2 ) ( θ s + δ s + r f s ) ( η ( δ u + r ) f u f u 2 ) , an increase of skilled search costs will decrease skilled-unskilled wage inequality.

Appendix C: The proof of Proposition 2

(C-1) Y γ s = 1 | J | ( η θ s + δ s + r f s ) ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( 1 η ) ( 1 λ ) Y × [ ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ( ( 1 τ ) Y 1 u u ( w s u u s L s + w u u L u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u L u Y ( 1 η ) ( 1 λ ) ) + ( 1 λ ) Y 1 u u ( w s u u u L s + ( 1 τ ) L s Y u s L s + L u ) ] < 0 ,

(C-2) τ γ s = 1 | J | ( η θ s + δ s + r f s ) L s Y u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( 1 η ) ( 1 λ ) ( 1 τ ) × [ ( w s u u u L s + ( λ L s Y ( 1 λ ) ( 1 u u ) L u Y ) L s τ Y ) ( λ Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u L u Y ( 1 η ) ( 1 λ ) ( 1 τ ) ) + ( ( 1 u u ) L s L u Y + ( λ L s Y ( 1 λ ) ( 1 u u ) L u Y ) L s ) ( 1 u u + 1 λ 1 u u ) τ Y 2 ] > 0 ,

(C-3) w s γ s = 1 | J | η ( θ s + δ s + r f s ) u u ( f u + θ u f u ) u s ( f s + θ s f s ) ( 1 η ) λ ( 1 λ ) Y ( ( ( 1 τ ) Y 1 u u ( ( w s u u s L s + w u u L u ) + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) ( u s L s + L u ) ( 1 η ) ( 1 λ ) ) ( δ s + θ s f s u s ( θ s f s + δ s + r ) δ s + r f s γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) + ( ( 1 τ ) Y L s u s L s + L u + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) ( ( 1 η ) ( w u w s u ) δ s + r f s θ s + δ s + r f s ( 1 u s ) L s λ + ( ( w s u u s L s + w u u L u ) + ( 1 λ ) Y 1 u u ) ) ) , 1 | J | δ s + r f s ( 1 u s ) L s ( 1 η ) ( 1 u u ) u s ( f s + θ s f s ) ( 1 δ u + r f u 2 f s ) η γ u ( 1 λ ) Y ( δ u + θ u f u ) ( ( 1 τ ) Y u s L s + L u L s + w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) < 0

(C-4) w u γ s = 1 | J | ( δ s + r f s + η θ s ) ( 1 u s ) L s u s ( f s + θ s f s ) ( 1 ( δ u + r ) f u f u 2 ) η γ u ( δ u + θ u f u ) ( 1 λ ) Y ( w s u u u L s + ( 1 τ ) Y u s L s + L u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) < 0 ,

(C-5) u s γ s = 1 | J | u s ( f s + θ s f s ) L s Y ( η θ s + δ s + r f s ) ( 1 η ) u u ( f u + θ u f u ) ( 1 λ ) Y ( ( 1 τ ) Y 1 u u τ Y u u ( 1 λ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u L u Y ( 1 λ ) ( 1 η ) ) > 0 ,

(C-6) u u γ s = 1 | J | u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( η θ s + δ s + r f s ) ( 1 u s ) L s L u Y ( 1 λ ) Y L u Y ( w s u u u L s + ( 1 τ ) ( 1 u u ) L s Y L u Y + λ L s Y L s Y ( 1 λ ) ( 1 u u ) L s Y L u Y ) > 0 .

Actually, it is easy to find that when the sign of u s γ s is positive, the dynamic adjustment system in Appendix B is stable. It is easy to figure out the sign of the change of the variables. All the signs are the same as those in Proposition 1, except the change of the wage rate.

According to Eqs. (C-3) and (C-4), we obtain:

( w s w u ) γ s = 1 | J | η ( θ s + δ s + r f s ) u u ( f u + θ u f u ) u s ( f s + θ s f s ) ( 1 η ) λ ( 1 λ ) Y ( ( ( 1 τ ) Y 1 u u ( ( w s u u s L s + w u u L u ) + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) ( u s L s + L u ) ( 1 η ) ( 1 λ ) ) ( δ s + θ s f s u s ( θ s f s + δ s + r ) ( δ s + r ) f s γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) + ( ( 1 τ ) Y L s u s L s + L u + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) ( ( 1 η ) ( w u w s u ) δ s + r f s θ s + δ s + r f s ( 1 u s ) L s λ + ( w s u u s L s + w u u L u + ( 1 λ ) Y 1 u u ) ) ) + 1 | J | η u u ( f u + θ u f u ) u s ( f s + θ s f s ) ( 1 λ ) Y ( 1 u s ) L s ( 1 δ u + r f u 2 f u ) γ u ( δ u + θ u f u ) u u ( f u + θ u f u ) ( w s u u u L s + ( 1 τ ) Y L s u s L s + L u + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ( ( δ s + r ) ( 1 ( 1 η ) ( 1 u u ) ) f s + η θ s )

Then, we know that when Y s Y u > ( 1 τ ) Y L s u s L s + L u + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ( δ s + θ s f s u s ( θ s f s + δ s + r ) δ s + r f s γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s ) + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ( η θ s + ( δ s + r ) ( 1 ( 1 η ) ( 1 u u ) ) f s ) ( 1 ( δ u + r ) f u f u 2 ) ( θ s + δ s + r f s ) ( η ( δ u + r ) f u f u 2 ) , skilled-unskilled wage inequality will be decreased.

Appendix D: The proof of Proposition 3

From Eqs. (10), (11), (17), (27) to (31), (A-6), and (A-7), we obtain the dynamic adjustment process as follows:

(D-1) G ˙ = d 1 ( α Y g G ) ,

(D-2) Y ˙ = d 2 ( G α ( L s Y ) λ ( L u Y ) 1 λ Y ) ,

(D-3) τ ˙ = d 3 ( w s u u s L s + w u u u u u u R L u ( τ α ) Y ) ,

(D-4) w ˙ s = d 4 ( ( 1 η ) w s u + η ( ( 1 τ ) Y s + θ s γ s ) w s ) ,

(D-5) w ˙ u = d 5 ( ( 1 η ) ( ( 1 u u R ) w u + u u R w u u ) + η ( ( 1 τ ) Y u + θ u γ u ) w u ) ,

(D-6) θ ˙ s = d 6 ( ( 1 τ ) λ Y ( w s + γ s f s ( δ s + r ) ) ( 1 u s ) L s ) ,

(D-7) θ ˙ u = d 7 ( ( 1 τ ) ( 1 λ ) Y ( w u + γ u f u ( δ u + r ) ) ( 1 u u ) L u ) ,

(D-8) u ˙ s = d 8 ( δ s ( 1 u s ) u s θ s f s ) ,

(D-9) u ˙ u = d 9 ( δ u ( 1 u u ) u u θ u f u ) ,

(D-10) u ˙ u R = d 10 ( ( 1 u u R ) u u L u g u G ) ,

where d i  > 0 (i = 1, …, 10) denotes the adjustment speed and x ˙  = dx/dt.

Then, from Eqs. (D-1)(D-10), we can get the following Jacobi matrix:

Γ 1 = [ d 1 g d 1 α 0 0 0 0 0 0 0 0 d 2 g d 2 0 0 0 0 0 d 2 λ Y 1 u s d 2 ( 1 λ ) Y 1 u u 0 0 d 3 ( τ α ) d 3 Y 0 0 0 0 d 3 w s u L s d 3 w u u u u R L u d 3 w u u u u L u 0 d 4 η ( 1 τ ) λ ( 1 u s ) L s d 4 η λ Y ( 1 u s ) L s d 4 0 d 4 η γ s 0 d 4 η ( 1 τ ) λ Y ( 1 u s ) 2 L s 0 0 0 d 5 η ( 1 τ ) ( 1 λ ) ( 1 u u ) L u d 5 η ( 1 λ ) Y ( 1 u u ) L u 0 d 5 0 d 5 η γ u 0 d 5 η ( 1 τ ) ( 1 λ ) Y ( 1 u u ) 2 L u 0 0 d 6 λ ( 1 τ ) d 6 λ Y d 6 ( 1 u s ) L s 0 d 6 ( δ s + r ) f s γ s ( 1 u s ) L s f s 2 0 d 6 ( w s + ( δ s + r ) γ s f s ) L s 0 0 0 d 7 ( 1 λ ) ( 1 τ ) d 7 ( 1 λ ) Y 0 d 7 ( 1 u u ) L u 0 d 7 δ u + r f u 2 f u γ u ( 1 u u ) L u 0 d 7 ( w u + ( δ u + r ) γ u f u ) L u 0 0 0 0 0 0 d 8 u s ( f s + θ s f s ) 0 d 8 ( δ s + θ s f s ) 0 0 0 0 0 0 0 0 d 9 u u ( f u + θ u f u ) 0 d 9 ( δ u + θ u f u ) 0 d 10 g u 0 0 0 0 0 0 0 d 10 ( 1 u u R ) L u d 10 u u L u ] .

Thus, we know | Γ 1 | = i = 1 10 d i | J 1 | > 0 . Then, we can find that the sign of | J 1 | is positive. That is,

| J 1 | = u u L u g u s ( f s + θ s f s ) ( 1 α ) ( 1 η ) ( 1 λ ) Y ( 1 η ) λ u u ( f u + θ u f u ) × [ ( ( 1 τ ) Y 1 u s + δ s + θ s f s u s ( f s + θ s f s ) ( η ( δ s + r ) f s f s 2 ) γ s ( 1 u s ) L s ( 1 η ) λ ( w s u L s + ( 1 + α g u w u u ( 1 α ) g ) λ Y 1 u s ) ) ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ( w u u L u + ( 1 + α g u w u u ( 1 α ) g ) ( 1 λ ) Y 1 u u ) ) ( w u u L u + ( 1 + α g u w u u ( 1 α ) g ) ( 1 λ ) Y 1 u u ) ( w s u L s + ( 1 + α g u w u u ( 1 α ) g ) λ Y 1 u s ) ] > 0 .

Thus, we can easily obtain the similar condition for the stability of the economic system to that of Proposition 1.

According to Eq. (32), we obtain the following equations:

(D-11) G γ s = 1 | J 1 | α ( η θ s + δ s + r f s ) ( 1 u s ) L s u u L u u s ( f s + θ s f s ) ( 1 η ) ( 1 λ ) Y u u ( f u + θ u f u ) ( λ Y 1 u s ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) w u u L u ) + w s u L s ( 1 λ ) Y 1 u u ) < 0 ,

(D-12) τ γ s = 1 | J 1 | ( η θ s + δ s + r f s ) ( 1 u s ) L s u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( 1 η ) ( 1 λ ) ( 1 τ ) u u L u g × ( L u L s Y s w s u ( w u u w s u Y u Y s ) + ( Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ( 1 τ ) ) ( w s u L s ( 1 α ) + λ Y 1 u s ( ( τ α ) + α g u w u u g ) ) ) > 0 ,

(D-13) u u R γ s = 1 | J 1 | u s ( f s + θ s f s ) ( η θ s + δ s + r f s ) ( 1 u s ) L s ( 1 η ) ( 1 λ ) Y u u ( f u + θ u f u ) α g u × ( λ Y 1 u s ( ( 1 τ ) Y ( 1 u u ) w u u u u R L u ( 1 λ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) + ( ( 1 λ ) Y 1 u u + ( 1 α ) g α g u ( 1 u u R ) L u ) ( w s u L s + λ Y 1 u s ) ) > 0 ,

(D-14) u s γ s = 1 | J 1 | u s ( f s + θ s f s ) ( η θ s + δ s + r f s ) ( 1 u s ) L s ( 1 η ) ( 1 λ ) Y u u ( f u + θ u f u ) u u L u g ( 1 α ) ( ( 1 τ ) Y 1 u u ( 1 + α w u u ( 1 α ) w u ) ( 1 λ ) Y ( 1 u u ) w u u L u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) > 0 ,

(D-15) u u γ s = 1 | J 1 | ( 1 η ) u s ( f s + θ s f u ) ( 1 λ ) Y u u L u u u ( f u + θ u f u ) ( η θ s + δ s + r f s ) ( 1 u s ) L s ( ( 1 α ) ( w s u L s + λ Y 1 u s ) g + α λ Y 1 u s g u w u u ) > 0 ,

(D-16) w s γ s = 1 | J 1 | η ( θ s + δ s + r f s ) u u L u u u ( f u + θ u f u ) u s ( f s + θ s f u ) λ Y ( 1 η ) ( 1 λ ) g ( 1 α ) [ ( w s u L s + ( 1 + α g u w u u ( 1 α ) g ) λ Y 1 u s ) ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) + ( ( δ s + θ s f s ) δ s + r f s 2 u s ( θ s + δ s + r f s ) γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s ) ( ( ( 1 τ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) w u u L u ( 1 + α g u w u u ( 1 α ) g ) ( 1 λ ) Y 1 u u ) ] < 0 ,

(D-17) w u γ s = 1 | J 1 | ( η θ s + δ s + r f s ) ( 1 u s ) L s u s ( f s + θ s f s ) ( 1 ( δ u + r ) f u f u 2 ) η γ u u u L u ( δ s + θ s f s ) ( 1 λ ) Y g u ( 1 α ) w u ( ( 1 τ ) Y 1 u u ( 1 + w u u α ( 1 α ) w u ) ( 1 λ ) Y 1 u u w u u L u ) < 0.

It is easy to figure out the signs of the changes of the variables. Besides the same changes of the variables as those in Proposition 1, the signs of G γ s and u u R γ s are negative, which means that when the unemployed unskilled labor in the production sector can look for a new job in the government sector, with the increase of skilled search costs, the provision of public goods and the unemployment rate in the government sector will decrease.

According to Eqs. (D-16) and (D-17), we obtain:

( w s w u ) γ s = 1 | J | η ( θ s + δ s + r f s ) u u ( f u + θ u f u ) u s ( f s + θ s f u ) ( 1 η ) λ ( 1 λ ) Y ( ( ( 1 τ ) Y 1 u u ( w s u u s L s + w u u L u + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) ( u s L s + L u ) ( 1 η ) ( 1 λ ) ) ( δ s + θ s f s u s ( θ s f s + δ s + r ) δ s + r f s γ s ( 1 u s ) L s λ ( 1 τ ) Y 1 u s + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) + ( ( 1 τ ) Y L s u s L s + L u + ( w s u u u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ) ( ( 1 η ) ( w u w s u ) δ s + r f s θ s + δ s + r f s ( 1 u s ) L s λ + ( ( w s u u s L s + w u u L u ) + ( 1 λ ) Y 1 u u ) ) ) + 1 | J | η u u ( f u + θ u f u ) u s ( f s + θ s f s ) ( 1 λ ) Y ( 1 u s ) L s ( 1 δ u + r f u 2 f u ) γ u ( δ u + θ u f u ) u u ( f u + θ u f u ) ( w s u u u L s + ( 1 τ ) Y u s L s + L u L s + ( λ Y 1 u s ( 1 λ ) L s Y L u + u s L s ) ) ( ( δ s + r ) ( 1 ( 1 η ) ( 1 u u ) ) f s + η θ s )

When Y s Y u > ( 1 τ ) Y 1 u u ( 1 + w u u α ( 1 α ) w u ) ( 1 λ ) Y 1 u u w u u L u δ s + θ s f s θ s f s + δ s + r ( δ s + r ) γ s f s ( 1 u s ) L s λ u s ( 1 τ ) Y 1 u s ( η θ s + δ s + r f s ) ( 1 ( δ u + r ) f u f u 2 ) ( η ( δ u + r ) f u f u 2 ) ( θ s + δ s + r f s ) , skilled-unskilled wage inequality will be decreased.

Appendix E: The proof of Proposition 4

For skilled search costs, from Eq. (31), we obtain the following equations:

(E-1) Y γ s 1 = 1 | J | ( w s η ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s ) ) ( 1 u s ) L s δ s + r f s u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( 1 η ) ( 1 λ ) Y ( λ Y 1 u s ( w u u L u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) + ( 1 τ ) Y ( 1 u u ) ) + ( 1 λ ) w s u L s Y 1 u u ) < 0 ,

(E-2) τ γ s 1 = 1 | J | ( w s η ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s ) ) ( 1 u s ) L s δ s + r f s u s ( f s + θ s f s ) ( 1 η ) ( 1 λ ) ( 1 τ ) u u ( f u + θ u f u ) × [ λ Y 1 u s ( w u u L u + τ ( Y ( 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ( 1 τ ) ) ) + w s u L s ( λ Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ( 1 τ ) ) ] > 0 ,

(E-3) w s γ s 1 = 1 | J | η ( 1 η ) λ ( 1 λ ) Y δ s + r f s ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s w s ) u s ( f s + θ s f s ) u u ( f u + θ u f u ) × [ ( ( 1 τ ) Y 1 u u ( w u u L u + ( 1 λ ) Y 1 u u ) + δ u + θ u f u u u ( f u + θ u f u ) ( η δ u + r f u 2 f u ) γ u ( 1 u u ) L u ( 1 η ) ( 1 λ ) ) ( ( 1 τ ) Y 1 u s ( w s u L s + λ Y 1 u s ) + δ s + θ s f s u s ( f s + θ s f s ) ( σ w σ γ δ s + r f s 2 f s ) γ s ( 1 u s ) L s λ ) ( w s u L s + λ Y 1 u s ) ( w u u L u + ( 1 λ ) Y 1 u u ) ] ,

(E-4) w u γ s 1 = 1 | J | ( 1 ( δ u + r ) f u f u 2 ) η γ u ( w s u L s + λ Y 1 u s ) ( w s η ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s ) ( 1 u s ) L s ( δ s + r ) u s ( f s + θ s f s ) ( 1 λ ) Y ( δ u + θ u f u ) f s < 0 ,

(E-5) u s γ s 1 = 1 | J | u s ( f s + θ s f s ) δ s + r f s u u ( f u + θ u f u ) ( w s L s Y η θ s γ s L s Y η λ ( 1 τ ) Y ) ( 1 η ) ( 1 λ ) Y ( ( 1 τ ) Y ( 1 u u ) w u u L u ( 1 λ ) Y 1 u u + δ u + θ u f u u u ( f u + θ u f u ) ( η ( δ u + r ) f u f u 2 ) γ u L s Y ( 1 η ) ( 1 λ ) ) > 0 ,

(E-6) u u γ s 1 = 1 | J | u s ( f s + θ s f s ) u u ( f u + θ u f u ) ( w s η ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s ) ( 1 η ) ( 1 λ ) Y ( w s u L s + λ Y 1 u s ) ( 1 u s ) L s ( δ s + r ) f s > 0 ,

where σ w = w s / ( λ ( 1 τ ) Y ( 1 u s ) L s + θ s γ s w s ) , σ γ = 1 + σ w , and ρ s = ( w s u L s + λ Y 1 u s ) / ( ( 1 τ ) Y 1 u s + δ s + θ s f s u s ( f s + θ s f s ) ( σ w σ γ ( δ s + r ) f s f s 2 ) γ s ( 1 u s ) L s λ ) .

According to Appendix B, it is easy to know σ w  > σ η , which means ρ s + ρ u < 1 and the sign of w s γ s 1 is negative. Then, we can obtain the conclusion that when Y s Y u > ( σ w η σ γ ) ( 1 δ u + r f u 2 f u ) ρ s ( η δ u + r f u 2 f u ) ( 1 ρ s ) , the sign of ( w s w u ) γ s 1 is negative.

References

Acemoglu, D. 1998. “Why Do New Technologies Complement Skills? Directed Technological Change and Wage Inequality.” Quarterly Journal of Economics 113 (4): 1055–189, https://doi.org/10.1162/003355398555838.Search in Google Scholar

Acemoglu, D. 2002. “Technical Change, Inequality and the Labour Market.” Journal of Economic Literature 40 (1): 7–72, https://doi.org/10.1257/0022051026976.Search in Google Scholar

Anwar, S. 2008. “Labour Supply, Foreign Investment and Welfare in the Presence of Public Good.” Economic Modelling 25 (5): 959–67, https://doi.org/10.1016/j.econmod.2008.01.001.Search in Google Scholar

Askenazy, P. 2005. “Trade, Services and Wage Inequality.” Oxford Economic Papers 57 (4): 674–92, https://doi.org/10.1093/oep/gpi026.Search in Google Scholar

Autor, D. H., L. F. Katz, and A. B. Krueger. 1998. “Computing Inequality: Have Computers Changed the Labor Market?.” Quarterly Journal of Economics 113 (4): 1169–213, https://doi.org/10.1162/003355398555874.Search in Google Scholar

Beladi, H., S. Chaudhuri, and S. Yabuuchi. 2008. “Can International Factor Mobility Reduce Wage Inequality in a Dual Economy?” Review of International Economics 16 (5): 893–903, https://doi.org/10.1111/j.1467-9396.2008.00751.x.Search in Google Scholar

Berman, E., J. Bound, and S. Machin. 1998. “Implications of Skill-Biased Technological Change: International Evidence.” Quarterly Journal of Economics 113 (4): 1245–79, https://doi.org/10.1162/003355398555892.Search in Google Scholar

Card, D., and J. E. DiNardo. 2002. “Skill-biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles.” Journal of Labor Economics 20 (4): 733–83, https://doi.org/10.1086/342055.Search in Google Scholar

Chusseau, N., M. Dumont, and J. Hellier. 2008. “Explaining Rising Inequality: Skill-Biased Technical Change and North-south Trade.” Journal of Economic Surveys 22 (3): 409–57, https://doi.org/10.1111/j.1467-6419.2007.00537.x.Search in Google Scholar

Davis, D. R. 1998. “Technology, Unemployment and Relative Wages in a Global Economy.” European Economic Review 42 (9): 1613–33, https://doi.org/10.1016/S0014-2921(97)00113-X.Search in Google Scholar

Falk, M., and B. Koebel. 2004. “The Impact of Office Machinery and Computer Capital on the Demand for Heterogeneous Labour.” Labour Economics 11 (1): 99–117, https://doi.org/10.1016/S0927-5371(03)00056-3.Search in Google Scholar

Feenstra, R. C., and G. H. Hanson. 1996. “Foreign Investment, Outsourcing and Relative Wages.” In Political Economy of Trade Policies: Essays in Honor of Jagdish N. Bhagwati, edited by R. Feenstra, G. Grossman, and D. Irwin. Cambridge, MA: MIT Press.10.3386/w5121Search in Google Scholar

Feenstra, R. C., and G. H. Hanson. 2003. “Global Production Sharing and Rising Wage Inequality: A Survey of Trade and Wages.” In Handbook of International Trade, edited by K. Choi, and J. Harrigan. London: Basil Blackwell.Search in Google Scholar

Freeman, R. B., and L. F. Katz. 1994. “Rising Wage Inequality: The US versus Other Advanced Countries.” In Working under Different Rules, edited by R. Freeman. New York: Russel Sage Foundation.Search in Google Scholar

Haskel, J., and M. J. Slaughter. 2002. “Does the Sector Bias of Skill-Biased Technical Change Explain Changing Skill Premia?” European Economic Review 46 (10): 1757–83, https://doi.org/10.1016/S0014-2921(01)00185-4.Search in Google Scholar

Helpman, E. 2010. “Labor Market Frictions as a Source of Comparative Advantage, with Implications for Unemployment and Inequality.” NBER Working Paper No. 15764.10.3386/w15764Search in Google Scholar

Hornstein, A., P. Krusell, and G. L. Violante. 2011. “Frictional Wage Dispersion in Search Models: A Quantitative Assessment.” The American Economic Review 101 (7): 2873–98, https://doi.org/10.1257/aer.101.7.2873.Search in Google Scholar

Juhn, C., K. M. Murphy, and B. Pierce. 1993. “Wage Inequality and the Rise in Returns to Skill.” Journal of Political Economy 101 (3): 410–42,https://doi.org/10.1086/261881.Search in Google Scholar

Katz, L. F., and D. H. Autor. 1999. “Changes in the Wage Structure and Earnings Inequality.” In Handbook of Labor Economics, edited by O. C. Ashenfelter, and D. Card. Amsterdam: Elsevier.10.1016/S1573-4463(99)03007-2Search in Google Scholar

Konishi, H., M. Okuno-Fujiwara, and K. Suzumura. 1990. “Oligopolistic Competition and Economic Welfare: A General Equilibrium Analysis of Entry Regulation and Tax-Subsidy Schemes.” Journal of Public Economics 42 (1): 67–88, https://doi.org/10.1016/0047-2727(90)90044-I.Search in Google Scholar

Krusell, P., L. Ohanaian, J.-V. Rios-Rull, and G. L. Violante. 2000. “Capital Skill Complementarity and Inequality: A Macroeconomic Analysis.” Econometrica 68 (5): 1029–54, https://doi.org/10.1111/1468-0262.00150.Search in Google Scholar

Mehta, A., and R. Hasan. 2012. “The Effects of Trade and Services Liberalization on Wage Inequality in India.” International Review of Economics & Finance 23: 75–90, https://doi.org/10.1016/j.iref.2011.10.007.Search in Google Scholar

Mortensen, D. T., and C. A. Pissarides. 1994. “Job Creation and Job Destruction in the Theory of Unemployment.” The Review of Economic Studies 61 (3): 397–415, https://doi.org/10.2307/2297896.Search in Google Scholar

Mortensen, D. T., and C. Pissarides. 2001. “Taxes, Subsidies and Equilibrium Labor Market Outcomes.” CEPR Discussion Paper No. 2989.Search in Google Scholar

Oladi, R., and H. Beladi. 2008. “Non-traded Goods, Technical Progress and Wages.” Open Economies Review 19 (4): 507–15, https://doi.org/10.1007/s11079-007-9057-1.Search in Google Scholar

Pi, J., and P. Zhang. 2018. “Skill-biased Technological Change and Wage Inequality in Developing Countries.” International Review of Economics & Finance 56: 347–62, https://doi.org/10.1016/j.iref.2017.11.004.Search in Google Scholar

Tjaden, V., and F. Wellschmied. 2014. “Quantifying the Contribution of Search to Wage Inequality.” American Economic Journal: Macroeconomics 6 (1): 134–61, https://doi.org/10.1257/mac.6.1.134.Search in Google Scholar

Uren, L., and G. Virag. 2011. “Skill Requirements, Search Frictions, and Wage Inequality.” International Economic Review 52 (2): 379–406, https://doi.org/10.1111/j.1468-2354.2011.00632.x.Search in Google Scholar

Verhoogen, E. A. 2008. “Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector.” Quarterly Journal of Economics 123 (2): 489–530, https://doi.org/10.1162/qjec.2008.123.2.489.Search in Google Scholar

Wood, A. 1994. North-south Trade, Employment and Inequality: Changing Fortunes in a Skill-Driven World. Oxford: Clarendon Press.10.1093/0198290152.001.0001Search in Google Scholar

Wood, A. 1995. “How Trade Hurt Unskilled Workers.” The Journal of Economic Perspectives 9 (3): 57–80, https://doi.org/10.1257/jep.9.3.57.Search in Google Scholar

Zenou, Y. 2008. “Job Search and Mobility in Developing Countries. Theory and Policy Implications.” Journal of Development Economics 86 (2): 336–55, https://doi.org/10.1016/j.jdeveco.2007.06.009.Search in Google Scholar

Zenou, Y. 2009. Urban Labor Economics. Cambridge: Cambridge University Press.Search in Google Scholar

Zhu, S. C., and D. Trefler. 2005. “Trade and Inequality in Developing Countries: A General Equilibrium Analysis.” Journal of International Economics 65 (1): 21–48, https://doi.org/10.1016/j.jinteco.2003.11.005.Search in Google Scholar

Received: 2019-11-10
Accepted: 2020-09-25
Published Online: 2020-11-19

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bejte-2019-0168/html
Scroll to top button