Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence
-
Tomasz Kantyka
, Karolina Plaza
, Joanna Koziel , Danuta Florczyk , Hennig R. Stennicke , Ida B. Thogersen , Jan J. Enghild , Gary A. Silverman , Stephen C. Pak and Jan Potempa
Abstract
Bacterial proteases are considered virulence factors and it is presumed that by abrogating their activity, host endogenous protease inhibitors play a role in host defense against invading pathogens. Here we present data showing that Staphylococcus aureus cysteine proteases (staphopains) are efficiently inhibited by Squamous Cell Carcinoma Antigen 1 (SCCA1), an epithelial-derived serpin. The high association rate constant (kass) for inhibitory complex formation (1.9×104m/s and 5.8×104 m/s for staphopain A and staphopain B interaction with SCCA1, respectively), strongly suggests that SCCA1 can regulate staphopain activity in vivo at epithelial surfaces infected/colonized by S. aureus. The mechanism of staphopain inhibition by SCCA1 is apparently the same for serpin interaction with target serine proteases whereby the formation of a covalent complex result in cleavage of the inhibitory reactive site peptide bond and associated release of the C-terminal serpin fragment. Interestingly, the SCCA1 reactive site closely resembles a motif in the reactive site loop of native S. aureus-derived inhibitors of the staphopains (staphostatins). Given that S. aureus is a major pathogen of epithelial surfaces, we suggest that SCCA1 functions to temper the virulence of this bacterium by inhibiting the staphopains.
©2011 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Review
- Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts
- Genes and Nucleic Acids
- Post-transcriptional regulation of human cathepsin L expression
- Protein Structure and Function
- In vitro conversion and seeded fibrillization of posttranslationally modified prion protein
- Synthesis of recombinant high density lipoprotein with apolipoprotein A-I and apolipoprotein A-V
- Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1
- Molecular Medicine
- Inhibition of AP-1 suppresses cervical cancer cell proliferation and is associated with p21 expression
- STAT3 controls matrix metalloproteinase-1 expression in colon carcinoma cells by both direct and AP-1-mediated interaction with the MMP-1 promoter
- Cell Biology and Signaling
- TGFβ1 suppresses vascular smooth muscle cell motility by expression of N-cadherin
- Renal pro-apoptotic proteins are reduced by growth hormone resistance but not by visceral fat removal
- Proteolysis
- Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence
Articles in the same Issue
- Review
- Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts
- Genes and Nucleic Acids
- Post-transcriptional regulation of human cathepsin L expression
- Protein Structure and Function
- In vitro conversion and seeded fibrillization of posttranslationally modified prion protein
- Synthesis of recombinant high density lipoprotein with apolipoprotein A-I and apolipoprotein A-V
- Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1
- Molecular Medicine
- Inhibition of AP-1 suppresses cervical cancer cell proliferation and is associated with p21 expression
- STAT3 controls matrix metalloproteinase-1 expression in colon carcinoma cells by both direct and AP-1-mediated interaction with the MMP-1 promoter
- Cell Biology and Signaling
- TGFβ1 suppresses vascular smooth muscle cell motility by expression of N-cadherin
- Renal pro-apoptotic proteins are reduced by growth hormone resistance but not by visceral fat removal
- Proteolysis
- Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence