Twin arginine translocation (Tat)-dependent protein transport: the passenger protein participates in the initial membrane binding step
-
René Schlesier
and Ralf Bernd Klösgen
Abstract
The initial step in twin arginine translocation (Tat)-dependent thylakoid transport of the 16/23 chimera is the interaction of the protein with the lipid bilayer. It results in the formation of the early translocation intermediate Ti-1, which is represented by a protease-protected fragment of 14 kDa. Cys-scanning mutagenesis in combination with in thylakoido and liposome insertion assays was used to precisely map this membrane-interacting and protease-protected fragment within the 16/23 chimera. The fragment comprises 124 residues, which are provided both by the transit peptide (31 residues) and the mature protein (93 residues), demonstrating that the passenger protein directly participates in membrane binding. The implications of this finding on the mechanism of Tat-dependent protein transport are discussed.
©2010 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Minireview
- Physiology and pathophysiology of the RANKL/RANK system
- Genes and Nucleic Acids
- Murine aldo-keto reductase family 1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10
- Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid (PSTVd) in infected tomato
- Protein Structure and Function
- Characterization of a mutant R11H αB-crystallin associated with human inherited cataract
- Secretion of hepatoma-derived growth factor is regulated by N-terminal processing
- Twin arginine translocation (Tat)-dependent protein transport: the passenger protein participates in the initial membrane binding step
- Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus
- Membranes, Lipids, Glycobiology
- Quantitative determination of haptoglobin glycoform variants in psoriasis
- Molecular Medicine
- Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice
- Cell Biology and Signaling
- Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal β-cells
- Proteolysis
- Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition
- Pharmacological and genetic evidence that cathepsin B is not the physiological activator of rodent prorenin
- Acknowledgement
- Acknowledgement
Articles in the same Issue
- Minireview
- Physiology and pathophysiology of the RANKL/RANK system
- Genes and Nucleic Acids
- Murine aldo-keto reductase family 1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10
- Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid (PSTVd) in infected tomato
- Protein Structure and Function
- Characterization of a mutant R11H αB-crystallin associated with human inherited cataract
- Secretion of hepatoma-derived growth factor is regulated by N-terminal processing
- Twin arginine translocation (Tat)-dependent protein transport: the passenger protein participates in the initial membrane binding step
- Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus
- Membranes, Lipids, Glycobiology
- Quantitative determination of haptoglobin glycoform variants in psoriasis
- Molecular Medicine
- Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice
- Cell Biology and Signaling
- Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal β-cells
- Proteolysis
- Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition
- Pharmacological and genetic evidence that cathepsin B is not the physiological activator of rodent prorenin
- Acknowledgement
- Acknowledgement